# 7ed5/4

 ← 6ed5/4 7ed5/4 8ed5/4 →
Prime factorization 7 (prime)
Step size 55.1877¢
Octave 22\7ed5/4 (1214.13¢)
Twelfth 34\7ed5/4 (1876.38¢)
(semiconvergent)
Consistency limit 2
Distinct consistency limit 2

7ED5/4 is the equal division of the just major third into seven parts of 55.1877 cents each, corresponding to 21.7440 edo (very nearly 61ed7). It is related to the alphaquarter temperament and the 5-limit temperament which tempers out |234 -7 -96> (0.198463 cents, 5-limit 1783&7980 comma).

## Intervals

degree cents value ratio
0 0.0000 1/1
1 55.1877 (5/4)1/7
2 110.3753 (5/4)2/7
3 165.5630 (5/4)3/7
4 220.7507 (5/4)4/7
5 275.9384 (5/4)5/7
6 331.1260 (5/4)6/7
7 386.3137 5/4
8 441.5014 (5/4)8/7
9 496.6891 (5/4)9/7
10 551.8767 (5/4)10/7
11 607.0644 (5/4)11/7
12 662.2521 (5/4)12/7
13 717.4398 (5/4)13/7
14 772.6274 (5/4)2 = 25/16
15 827.8151 (5/4)15/7
16 883.0028 (5/4)16/7
17 938.1904 (5/4)17/7
18 993.3781 (5/4)18/7
19 1048.5658 (5/4)19/7
20 1103.7535 (5/4)20/7
21 1158.9411 (5/4)3 = 125/64
22 1214.1288 (5/4)22/7
23 1269.3165 (5/4)23/7
25 1379.6918 (5/4)25/7
26 1434.8795 (5/4)26/7
27 1490.0672 (5/4)27/7
28 1545.2549 (5/4)4 = 625/256
29 1600.4425 (5/4)29/7
30 1655.6302 (5/4)30/7
31 1710.8179 (5/4)31/7
32 1766.0055 (5/4)32/7
33 1821.1932 (5/4)33/7
34 1876.3809 (5/4)34/7
35 1931.5686 (5/4)5 = 3125/1024
36 1986.7562 (5/4)36/7
37 2041.9439 (5/4)37/7
38 2097.1316 (5/4)38/7
39 2152.3193 (5/4)39/7
40 2207.5069 (5/4)40/7
41 2262.6946 (5/4)41/7
42 2317.8823 (5/4)6 = 15625/4096
43 2373.0700 (5/4)43/7
44 2428.2576 (5/4)44/7
45 2483.4453 (5/4)45/7
46 2538.6330 (5/4)46/7
47 2593.8207 (5/4)47/7
48 2649.0083 (5/4)48/7
49 2704.1960 (5/4)7 = 78125/16384
50 2759.3837 (5/4)50/7
51 2814.5713 (5/4)51/7
52 2869.7590 (5/4)52/7
53 2924.9467 (5/4)53/7
54 2980.1344 (5/4)54/7
55 3035.3220 (5/4)55/7
56 3090.5097 (5/4)8 = 390625/65536
57 3145.6974 (5/4)57/7
58 3200.8851 (5/4)58/7
59 3256.0727 (5/4)59/7
60 3311.2604 (5/4)60/7
61 3366.4481 (5/4)61/7
62 3421.6358 (5/4)62/7
63 3476.8234 (5/4)9 = 1953125/262144
64 3532.0111 (5/4)64/7
65 3587.1988 (5/4)65/7
66 3642.3864 (5/4)66/7
67 3697.5741 (5/4)67/7
68 3752.7618 (5/4)68/7
69 3807.9495 (5/4)69/7
70 3863.1371 (5/4)10 = 9765625/1048576
71 3918.3248 (5/4)71/7
72 3973.5125 (5/4)72/7
73 4028.7002 (5/4)73/7
74 4083.8878 (5/4)74/7
75 4139.0755 (5/4)75/7
76 4194.2632 (5/4)76/7
77 4249.4509 (5/4)11 = 48828125/4194304
78 4304.6385 (5/4)78/7
79 4359.8262 (5/4)79/7
80 4415.0139 (5/4)80/7
81 4470.2015 (5/4)81/7
82 4525.3892 (5/4)82/7
83 4580.5769 (5/4)83/7
84 4635.7646 (5/4)12 = 244140625/16777216
85 4690.9522 (5/4)85/7
86 4746.1399 (5/4)86/7
87 4801.3276 (5/4)87/7
88 4856.5153 (5/4)88/7
89 4911.7029 (5/4)89/7
90 4966.8906 (5/4)90/7
91 5022.0783 (5/4)13 = 1220703125/67108864

## 7ED5/4 as a generator

### Alphaquarter

7ED5/4 leads the alphaquarter temperament using its three steps for 11/10, its nine steps for 4/3, and its 61 steps for 7/1. Alphaquarter tempers out 3025/3024, 4000/3993, and 5120/5103 in the 11-limit, supported by 87edo, 152edo, 239edo, and 391edo among others.

### 1783&7980 temperament

7ED5/4 leads 1783&7980 temperament using its 96 steps for 64/3 (four octaves plus just perefect fourth).

Comma: |234 -7 -96>

POTE generator: 55.188

Mapping: [<1 6 2|, <0 -96 7|]

EDOs: 1783, 4414, 6197, 7980, 9763, 11546, 14177