6ed5/4

From Xenharmonic Wiki
Jump to navigation Jump to search
← 5ed5/4 6ed5/4 7ed5/4 →
Prime factorization 2 × 3
Step size 64.3856¢ 
Octave 19\6ed5/4 (1223.33¢)
Twelfth 30\6ed5/4 (1931.57¢) (→5\1ed5/4)
Consistency limit 3
Distinct consistency limit 2
Special properties

6ED5/4 is the equal division of the just major third into six parts of 64.3856 cents each, corresponding to 18.6377 edo. It is related to the 17-limit temperament which tempers out 561/560, 715/714, 729/728, 847/845, and 5632/5625, which is supported by 149edo and 205edo.

Intervals

degree cents value ratio
0 0.0000 1/1
1 64.3856 (5/4)1/6
2 128.7712 (5/4)1/3
3 193.1569 (5/4)1/2
4 257.5425 (5/4)2/3
5 321.9281 (5/4)5/6
6 386.3137 5/4
7 450.6993 (5/4)7/6
8 515.0850 (5/4)4/3
9 579.4706 (5/4)3/2
10 643.8562 (5/4)5/3
11 708.2418 (5/4)11/6
12 772.6274 (5/4)2 = 25/16
13 837.0130 (5/4)13/6
14 901.3987 (5/4)7/3
15 965.7843 (5/4)5/2
16 1030.1699 (5/4)8/3
17 1094.5555 (5/4)17/6
18 1158.9411 (5/4)3 = 125/64
19 1223.3268 (5/4)19/6
20 1287.7124 (5/4)10/3
21 1352.0980 (5/4)7/2
22 1416.4836 (5/4)11/3
23 1480.8692 (5/4)23/6
24 1545.2549 (5/4)4 = 625/256
25 1609.6405 (5/4)25/6
26 1674.0261 (5/4)13/3
27 1738.4117 (5/4)9/2
28 1802.7973 (5/4)14/3
29 1867.1830 (5/4)29/6
30 1931.5686 (5/4)5 = 3125/1024
31 1995.9542 (5/4)31/6
32 2060.3398 (5/4)16/3
33 2124.7254 (5/4)11/2
34 2189.1110 (5/4)17/3
35 2253.4967 (5/4)35/6
36 2317.8823 (5/4)6 = 15625/4096
37 2382.2679 (5/4)37/6
38 2446.6535 (5/4)19/3
39 2511.0391 (5/4)13/2
40 2575.4248 (5/4)20/3
41 2639.8104 (5/4)41/6
42 2704.1960 (5/4)7 = 78125/16384
43 2768.5816 (5/4)43/6
44 2832.9672 (5/4)22/3
45 2897.3529 (5/4)15/2
46 2961.7385 (5/4)23/3
47 3026.1241 (5/4)47/6
48 3090.5097 (5/4)8 = 390625/65536
49 3154.8953 (5/4)49/6
50 3219.2809 (5/4)25/3
51 3283.6666 (5/4)17/2
52 3348.0522 (5/4)26/3
53 3412.4378 (5/4)53/6
54 3476.8234 (5/4)9 = 1953125/262144
55 3541.2090 (5/4)55/6
56 3605.5947 (5/4)28/3
57 3669.9803 (5/4)19/2
58 3734.3659 (5/4)29/3
59 3798.7515 (5/4)59/6
60 3863.1371 (5/4)10 = 9765625/1048576
61 3927.5228 (5/4)61/6
62 3991.9084 (5/4)31/3
63 4056.2940 (5/4)21/2
64 4120.6796 (5/4)32/3
65 4185.0652 (5/4)65/6
66 4249.4509 (5/4)11 = 48828125/4194304
67 4313.8365 (5/4)67/6
68 4378.2221 (5/4)34/3
69 4442.6077 (5/4)23/2
70 4506.9933 (5/4)35/3
71 4571.3789 (5/4)71/6
72 4635.7646 (5/4)12 = 244140625/16777216
73 4700.1502 (5/4)73/6
74 4764.5358 (5/4)37/3
75 4828.9214 (5/4)25/2
76 4893.3070 (5/4)38/3
77 4957.6927 (5/4)77/6
78 5022.0783 (5/4)13 = 1220703125/67108864

Harmonics

Approximation of harmonics in 6ed5/4
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +23.3 +29.6 -17.7 -17.7 -11.4 -20.8 +5.6 -5.2 +5.6 -30.6 +11.9
Relative (%) +36.2 +46.0 -27.5 -27.5 -17.8 -32.3 +8.7 -8.0 +8.7 -47.6 +18.5
Steps
(reduced)
19
(1)
30
(0)
37
(1)
43
(1)
48
(0)
52
(4)
56
(2)
59
(5)
62
(2)
64
(4)
67
(1)
Approximation of harmonics in 6ed5/4
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +2.1 +2.6 +11.9 +28.9 -11.6 +18.2 -11.0 +28.9 +8.8 -7.3 -19.9
Relative (%) +3.2 +4.0 +18.5 +44.9 -18.1 +28.2 -17.2 +44.9 +13.7 -11.4 -30.9
Steps
(reduced)
69
(3)
71
(5)
73
(1)
75
(3)
76
(4)
78
(0)
79
(1)
81
(3)
82
(4)
83
(5)
84
(0)