38edf
Jump to navigation
Jump to search
Prime factorization
2 × 19
Step size
18.4725¢
Octave
65\38edf (1200.71¢)
Twelfth
103\38edf (1902.67¢)
Consistency limit
6
Distinct consistency limit
6
← 37edf | 38edf | 39edf → |
Division of the just perfect fifth into 38 equal parts (38EDF) is related to 65edo, but with the 3/2 rather than the 2/1 being just. The octave is stretched by about 0.7125 cents and the step size is about 18.4725 cents.
Harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.71 | +0.71 | +3.03 | -6.83 | +4.99 | -7.13 | +8.73 | +0.90 | +2.64 | +7.73 | +3.11 |
Relative (%) | +3.9 | +3.9 | +16.4 | -37.0 | +27.0 | -38.6 | +47.3 | +4.9 | +14.3 | +41.9 | +16.8 | |
Steps (reduced) |
65 (27) |
103 (27) |
151 (37) |
182 (30) |
225 (35) |
240 (12) |
266 (0) |
276 (10) |
294 (28) |
316 (12) |
322 (18) |
Intervals
Step number | Cents value |
---|---|
1 | 18.4725 |
2 | 36.945 |
3 | 55.4175 |
4 | 73.89 |
5 | 92.3625 |
6 | 110.835 |
7 | 129.3075 |
8 | 147.78 |
9 | 166.2525 |
10 | 184.725 |
11 | 203.1975 |
12 | 221.67 |
13 | 240.1425 |
14 | 258.615 |
15 | 277.0875 |
16 | 295.56 |
17 | 314.0325 |
18 | 332.505 |
19 | 350.9775 |
20 | 369.45 |
21 | 387.9225 |
22 | 406.395 |
23 | 424.8675 |
24 | 443.34 |
25 | 461.8125 |
26 | 480.285 |
27 | 498.7575 |
28 | 517.23 |
29 | 535.7025 |
30 | 553.175 |
31 | 572.6475 |
32 | 591.12 |
33 | 609.5925 |
34 | 628.065 |
35 | 646.5375 |
36 | 664.01 |
37 | 683.4825 |
38 | 701.955 |
39 | 720.4275 |
40 | 738.9 |
41 | 757.3725 |
42 | 775.845 |
43 | 794.3175 |
44 | 812.79 |
45 | 831.2625 |
46 | 849.735 |
47 | 868.2075 |
48 | 886.605 |
49 | 905.1525 |
50 | 923.625 |
51 | 942.0975 |
52 | 960.57 |
53 | 979.0425 |
54 | 997.515 |
55 | 1015.9875 |
56 | 1034.46 |
57 | 1052.9235 |
58 | 1071.405 |
59 | 1089.8775 |
60 | 1108.35 |
61 | 1126.8225 |
62 | 1145.295 |
63 | 1163.7675 |
64 | 1182.24 |
65 | 1200.7125 |
66 | 1219.185 |
67 | 1237.6575 |
68 | 1256.13 |
69 | 1274.6025 |
70 | 1293.075 |
71 | 1311.5775 |
72 | 1330.02 |
73 | 1348.4925 |
74 | 1366.965 |
75 | 1385.4375 |
76 | 1403.91 |
Todo: complete table Add a third column that comments on the intervals, either what JI they approximate, what they are named, or how they can be used musically. |