39edf
Jump to navigation
Jump to search
Prime factorization
3 × 13
Step size
17.9988¢
Octave
67\39edf (1205.92¢)
Twelfth
106\39edf (1907.88¢)
Consistency limit
2
Distinct consistency limit
2
← 38edf | 39edf | 40edf → |
39EDF is the equal division of the just perfect fifth into 39 parts of 17.9988 cents each, corresponding to 66.6709 edo. It is nearly identical to every third step of 200edo.
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +5.92 | +5.92 | -6.15 | +3.51 | -6.15 | -3.04 | -0.23 | -6.15 | -8.57 | +6.42 | -0.23 |
Relative (%) | +32.9 | +32.9 | -34.2 | +19.5 | -34.2 | -16.9 | -1.3 | -34.2 | -47.6 | +35.6 | -1.3 | |
Steps (reduced) |
67 (28) |
106 (28) |
133 (16) |
155 (38) |
172 (16) |
187 (31) |
200 (5) |
211 (16) |
221 (26) |
231 (36) |
239 (5) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +5.19 | +2.88 | -8.57 | +5.69 | +8.73 | -0.23 | -3.84 | -2.65 | +2.88 | -5.66 | +7.38 |
Relative (%) | +28.8 | +16.0 | -47.6 | +31.6 | +48.5 | -1.3 | -21.3 | -14.7 | +16.0 | -31.4 | +41.0 | |
Steps (reduced) |
247 (13) |
254 (20) |
260 (26) |
267 (33) |
273 (0) |
278 (5) |
283 (10) |
288 (15) |
293 (20) |
297 (24) |
302 (29) |
Intervals
degree | cents value | corresponding JI intervals |
comments |
---|---|---|---|
0 | exact 1/1 | ||
1 | 17.9988 | 100/99, 99/98, 96/95 | |
2 | 35.9977 | 50/49, 49/48 | |
3 | 53.9965 | 33/32 | |
4 | 71.9954 | (25/24), (24/23) | |
5 | 89.9942 | ||
6 | 107.9931 | 16/15 | |
7 | 125.9919 | ||
8 | 143.9908 | 25/23 | |
9 | 161.9896 | ||
10 | 179.9885 | 10/9 | |
11 | 197.9873 | ||
12 | 215.9862 | 17/15 | |
13 | 233.985 | 8/7 | |
14 | 251.9838 | ||
15 | 269.9827 | 7/6 | |
16 | 287.9815 | 13/11 | |
17 | 305.9804 | 68/57 | |
18 | 323.9792 | 6/5 | |
19 | 341.9781 | 39/32 | |
20 | 359.9769 | 16/13 | |
21 | 377.9758 | lower pseudo-5/4 | |
22 | 395.9746 | upper pseudo-5/4 | |
23 | 413.9735 | 33/26 | |
24 | 431.9723 | 9/7 | |
25 | 449.9712 | ||
26 | 467.97 | ||
27 | 485.9688 | 45/34 | |
28 | 503.9677 | 4/3 | |
29 | 521.9665 | 27/20 | |
30 | 539.9654 | ||
31 | 557.9642 | ||
32 | 575.9631 | ||
33 | 593.9619 | ||
34 | 611.9608 | 64/45 | |
35 | 629.9596 | (23/16), (36/25) | |
36 | 647.9585 | 16/11 | pseudo-36/25 |
37 | 665.9573 | 72/49 | |
38 | 683.9562 | 95/64, 49/33, 297/200, 40/27 | |
39 | 701.955 | exact 3/2 | just perfect fifth |
40 | 720.9388 | 50/33, 297/196, 144/95 | |
41 | 737.9527 | 75/49, 49/32 | |
42 | 755.9515 | 99/64 | |
43 | 773.9504 | 25/16, 36/23 | |
44 | 791.9492 | ||
45 | 809.9481 | 8/5 | |
46 | 827.9469 | ||
47 | 845.9458 | 75/46 | |
48 | 863.9446 | ||
49 | 881.9435 | 5/3 | |
50 | 899.9423 | ||
51 | 917.9412 | 17/10 | |
52 | 935.94 | 12/7 | |
53 | 954.9388 | ||
54 | 971.9377 | 7/4 | |
55 | 989.9365 | 39/22 | |
56 | 1007.9354 | 34/19 | |
57 | 1025.9342 | 9/5 | |
58 | 1043.9331 | 117/64 | |
59 | 1061.9319 | 24/13 | |
60 | 1079.9308 | lower pseudo-15/8 | |
61 | 1097.9296 | upper pseudo-15/8 | |
62 | 1115.9285 | 99/52 | |
63 | 1134.9273 | 27/14 | |
64 | 1151.9261 | ||
65 | 1169.925 | 49/25 | |
66 | 1187.9238 | 135/68 | |
67 | 1205.9227 | 2/1 | |
68 | 1223.9215 | 81/40 | |
69 | 1241.9204 | ||
70 | 1259.9192 | ||
71 | 1277.9181 | ||
72 | 1295.9169 | ||
73 | 1313.9158 | 32/15 | |
74 | 1331.9146 | 69/32, 54/25 | |
75 | 1349.9135 | 24/11 | pseudo-54/25 |
76 | 1367.9123 | 108/49 | |
77 | 1385.9112 | 285/128, 49/22, 891/400, 20/9 | |
78 | 1403.91 | exact 9/4 |