58edf

From Xenharmonic Wiki
Jump to navigation Jump to search
← 57edf58edf59edf →
Prime factorization 2 × 29
Step size 12.1027¢ 
Octave 99\58edf (1198.16¢)
Twelfth 157\58edf (1900.12¢)
Consistency limit 12
Distinct consistency limit 9

Division of the just perfect fifth into 58 equal parts (58EDF) is related to 99edo, but with the 3/2 rather than the 2/1 being just. The octave is about 1.8354 cents compressed and the step size is about 12.1027 cents (corresponding to 99.1517 edo). It is consistent to the 12-integer-limit. In comparison, 99edo is only consistent up to the 10-integer-limit.

Intervals

todo: mapping for 11 and 13 should differ from 99edo

Degrees Cents Value Five limit Seven limit Eleven limit Thirteen limit
1 12.1027 2048/2025 126/125 99/98 91/90
2 24.2053 81/80 64/63 55/54
3 36.308 128/125 49/48
4 48.4107 250/243 36/35 33/32
5 60.5134 648/625 28/27 26/25
6 72.616 25/24 22/21
7 84.7187 256/243 21/20
8 96.8214 135/128 81/77 52/49
9 108.92405 16/15
10 121.0267 2187/2048 15/14
11 133.1294 27/25 13/12
12 145.2321 625/576 49/45
13 157.3347 800/729 35/32 11/10
14 169.4374 1125/1024 54/49
15 181.54 10/9 10/9
16 193.6428 4096/3645 28/25
17 205.7454 9/8
18 217.8481 256/225 245/216 112/99 91/80
19 229.9508 729/640 8/7
20 242.05345 144/125 63/55 52/45
21 254.1561 125/108 81/70 15/13
22 266.2587 729/625 7/6
23 278.3615 75/64 33/28
24 290.4641 32/27 32/27 13/11
25 302.5668 1215/1024 25/21
26 314.6695 6/5
27 326.7722 3125/2592 98/81 91/75
28 338.8748 243/200 128/105 11/9
29 350.9775 625/512 49/40
30 363.0802 100/81 27/22 16/13
31 375.18285 3888/3125 56/45
32 387.2855 5/4
33 399.3882 512/405 63/50 49/39
34 411.4909 81/64 80/63 33/26
35 423.5935 32/25 14/11
36 435.6962 625/486 9/7
37 447.7989 162/125 35/27 13/10
38 459.90155 125/96 64/49 55/42
39 472.0042 320/243 21/16
40 484.1069 675/512 250/189 65/49
41 469.2096 4/3
42 508.3122 8192/6075 75/56 66/49
43 520.4149 27/20
44 532.5176 512/375 49/36
45 544.6203 1000/729 48/35 11/8
46 556.7229 864/625 112/81 91/66
47 568.8256 25/18 18/13
48 580.9283 1024/729 7/5
49 593.03095 45/32
50 605.1336 64/45
51 617.2362 729/512 10/7
52 629.339 36/25 13/9
53 641.4416 625/432 81/56 75/52
54 653.5443 729/500 35/24 16/11
55 665.647 375/256 72/49
56 677.7497 40/27
57 689.8523 6075/4096 112/75 49/33
58 701.955 3/2
59 714.0577 1024/675 189/125 91/60
60 726.16035 243/160 32/21
61 738.263 192/125 49/32
62 750.3657 125/81 54/35 20/13
63 762.4684 972/625 14/9
64 774.571 25/16 11/7
65 786.6737 128/81 63/40 52/33
66 798.7764 405/256 100/63 78/49
67 810.87905 8/5
68 822.9817 3125/1944 45/28
69 835.0844 81/50 44/27 13/8
70 847.1871 625/384 49/30
71 859.2897 400/243 105/64 18/11
72 871.3924 3375/2048 81/49
73 883.4951 5/3
74 895.5978 2048/1215 42/25
75 907.7004 27/16 22/13
76 919.8031 128/75 56/33 56/33
77 931.9058 1250/729 12/7
78 944.00845 216/125 140/81 26/15
79 956.1111 125/72 110/63 45/26
80 968.2138 1280/729 7/4
81 980.3165 225/128 225/128 99/56
82 992.4191 16/9
83 1004.5218 3645/2048 25/14
84 1016.6245 9/5
85 1028.7272 2048/1125 49/27
86 1040.8298 729/400 64/35 11/6
87 1052.9325 1152/625 90/49
88 1065.0352 50/27
89 1077.13785 4096/2187 28/15
90 1089.2405 15/8
91 1101.3432 256/135 189/100 154/81 49/26
92 1113.4459 243/128 40/21
93 1125.5485 48/25
94 1137.6512 625/324 27/14 25/13
95 1149.7539 243/125 35/18 35/18
96 1161.8566 125/64 49/25 49/25
97 1173.9592 160/81 63/32
98 1186.0619 2025/1024 125/63
99 1198.1646 2/1
100 1210.2672 4096/2025 252/125 99/49 91/45
101 1222.3699 81/40 128/63 55/27
102 1234.4726 256/125 49/24
103 1246.5753 500/243 72/35 33/16
104 1258.6779 1296/625 56/27 52/25
105 1270.7806 25/12 44/21
106 1282.8833 512/243 21/10
107 1294.98595 135/64 162/77 104/49
108 1307.0886 32/15
109 1319.1913 2187/1024 15/7
110 1331.294 54/25 13/6
111 1343.3966 625/288 98/45
112 1355.4993 1600/729 35/16 11/5
113 1367.602 1125/512 108/49
114 1379.7047 20/9
115 1391.8073 8192/3645 56/25
116 1403.91 9/4

See also