# 57edf

 ← 56edf 57edf 58edf →
Prime factorization 3 × 19
Step size 12.315¢
Octave 97\57edf (1194.56¢)
Twelfth 154\57edf (1896.51¢)
Consistency limit 2
Distinct consistency limit 2

57EDF is the equal division of the just perfect fifth into 57 parts of 12.3150 cents each, corresponding to 97.4421 edo. It is related to the regular temperament which tempers out |-32 33 0 -6 -1> and |76 -8 0 -9 -11> in the 11-limit, which is supported by 877, 3313, 4190, 5067, 5944, 6821, 7698, and 11011 EDOs.

## Related regular temperaments

### 2.3.7 subgroup 877&5067

Commas: |-428 371 0 -57>

POTE generator: ~1605632/1594323 = 12.3149

Mapping: [<1 1 -1|, <0 57 371|]

EDOs: 877, 4190, 5067, 5944, 6821, 7698, 8575

### 2.3.7.11 subgroup 877&5067

Commas: |-32 33 0 -6 -1>, |76 -8 0 -9 -11>

POTE generator: ~1605632/1594323 = 12.3150

Mapping: [<1 1 -1 7|, <0 57 371 -345|]

EDOs: 877, 3313, 4190, 5067, 5944, 6821, 7698, 11011

### 2.3.7.11.13 subgroup 877&5067

Commas: 257330216/257298363, 53722307808/53710650917, 1786706395136/1786568061663

POTE generator: ~1605632/1594323 = 12.3150

Mapping: [<1 1 -1 7 -10|, <0 57 371 -345 1335|]

EDOs: 877, 3313, 4190, 5067, 5944, 9257