57edf

From Xenharmonic Wiki
Jump to navigation Jump to search
← 56edf 57edf 58edf →
Prime factorization 3 × 19
Step size 12.315¢ 
Octave 97\57edf (1194.56¢)
Twelfth 154\57edf (1896.51¢)
Consistency limit 2
Distinct consistency limit 2

57EDF is the equal division of the just perfect fifth into 57 parts of 12.3150 cents each, corresponding to 97.4421 edo.

It is related to the regular temperament which tempers out [-32 33 0 -6 -1 and [76 -8 0 -9 -11 in the 11-limit, which is supported by 877, 3313, 4190, 5067, 5944, 6821, 7698, and 11011 EDOs.

Related regular temperaments

2.3.7 subgroup 877&5067

Commas: [-428 371 0 -57

POTE generator: ~1605632/1594323 = 12.3149

Mapping: [1 1 -1], 0 57 371]]

EDOs: 877, 4190, 5067, 5944, 6821, 7698, 8575

2.3.7.11 subgroup 877&5067

Commas: [-32 33 0 -6 -1, [76 -8 0 -9 -11

POTE generator: ~1605632/1594323 = 12.3150

Mapping: [1 1 -1 7], 0 57 371 -345]]

EDOs: 877, 3313, 4190, 5067, 5944, 6821, 7698, 11011

2.3.7.11.13 subgroup 877&5067

Commas: 257330216/257298363, 53722307808/53710650917, 1786706395136/1786568061663

POTE generator: ~1605632/1594323 = 12.3150

Mapping: [1 1 -1 7 -10], 0 57 371 -345 1335]]

EDOs: 877, 3313, 4190, 5067, 5944, 9257

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 12.315
2 24.63
3 36.945
4 49.26 34/33
5 61.575 29/28
6 73.89
7 86.205
8 98.52
9 110.835
10 123.15
11 135.465
12 147.78
13 160.095 23/21
14 172.41 21/19
15 184.725 10/9, 29/26
16 197.04 19/17, 28/25
17 209.355 26/23
18 221.67 25/22, 33/29
19 233.985
20 246.3
21 258.615 29/25
22 270.93 34/29
23 283.245 33/28
24 295.56
25 307.875 31/26
26 320.19
27 332.505 17/14, 23/19
28 344.82
29 357.135
30 369.45 21/17, 26/21
31 381.765
32 394.08
33 406.395
34 418.71 14/11
35 431.025
36 443.34 22/17
37 455.655
38 467.97
39 480.285 29/22, 33/25
40 492.6
41 504.915
42 517.23 27/20, 31/23
43 529.545 19/14, 34/25
44 541.86 26/19
45 554.175 29/21
46 566.49
47 578.805
48 591.12
49 603.435
50 615.75
51 628.065
52 640.38
53 652.695 19/13
54 665.01 22/15, 25/17
55 677.325 31/21
56 689.64
57 701.955 3/2

Harmonics

Approximation of harmonics in 57edf
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -5.44 -5.44 +1.43 -3.12 +1.43 +5.48 -4.02 +1.43 +3.75 -1.16 -4.02
Relative (%) -44.2 -44.2 +11.6 -25.4 +11.6 +44.5 -32.6 +11.6 +30.4 -9.4 -32.6
Steps
(reduced)
97
(40)
154
(40)
195
(24)
226
(55)
252
(24)
274
(46)
292
(7)
309
(24)
324
(39)
337
(52)
349
(7)
Approximation of harmonics in 57edf
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +5.19 +0.04 +3.75 +2.85 -3.59 -4.02 +0.90 -1.70 +0.04 +5.71 +2.64
Relative (%) +42.1 +0.3 +30.4 +23.1 -29.1 -32.6 +7.3 -13.8 +0.3 +46.3 +21.4
Steps
(reduced)
361
(19)
371
(29)
381
(39)
390
(48)
398
(56)
406
(7)
414
(15)
421
(22)
428
(29)
435
(36)
441
(42)