877edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 876edo 877edo 878edo →
Prime factorization 877 (prime)
Step size 1.3683¢ 
Fifth 513\877 (701.938¢)
Semitones (A1:m2) 83:66 (113.6¢ : 90.31¢)
Consistency limit 15
Distinct consistency limit 15

877 equal divisions of the octave (abbreviated 877edo or 877ed2), also called 877-tone equal temperament (877tet) or 877 equal temperament (877et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 877 equal parts of about 1.37 ¢ each. Each step represents a frequency ratio of 21/877, or the 877th root of 2.

Theory

877edo is consistent to the 15-odd-limit. It tempers out 3025/3024, 496125/495616, 420175/419904 and 40960000/40920957 in the 11-limit; 2080/2079, 3025/3024, 123201/123200, 91125/91091 and 65625/65536 in the 13-limit. Using the 2.3.7.11.23.43 subgroup, it tempers out 3312/3311. The equal temperament supports quartic, quarterframe and pulsar temperaments.

Prime harmonics

Approximation of prime harmonics in 877edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.000 -0.017 -0.453 -0.069 +0.107 -0.391 +0.404 -0.592 -0.224 -0.615 +0.232
Relative (%) +0.0 -1.2 -33.1 -5.0 +7.8 -28.6 +29.5 -43.2 -16.4 -44.9 +17.0
Steps
(reduced)
877
(0)
1390
(513)
2036
(282)
2462
(708)
3034
(403)
3245
(614)
3585
(77)
3725
(217)
3967
(459)
4260
(752)
4345
(837)

Subsets and supersets

877edo is the 151st prime edo.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [-1390 877 [877 1390]] 0.0052 0.0052 0.38
2.3.5 [-20 -24 25, [54 -37 2 [877 1390 2036]] 0.0685 0.0896 6.55
2.3.5.7 65625/65536, 420175/419904, [18 -18 13 -7 [877 1390 2036 2462]] 0.0575 0.0799 5.84
2.3.5.7.11 3025/3024, 496125/495616, 420175/419904, 40960000/40920957 [877 1390 2036 2462 3034]] 0.0398 0.0797 5.82
2.3.5.7.11.13 2080/2079, 3025/3024, 123201/123200, 91125/91091, 65625/65536 [877 1390 2036 2462 3034 3245]] 0.0508 0.0768 5.61

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
Ratio*
Temperaments
1 182\877 249.031 [-26 18 -1 Monzismic
1 231\877 316.078 6/5 Counterhanson
1 359\877 491.220 8388608/6328125 Sesesix

* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct