72edt
Jump to navigation
Jump to search
Prime factorization
23 × 32
Step size
26.416¢
Octave
45\72edt (1188.72¢) (→5\8edt)
Consistency limit
2
Distinct consistency limit
2
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 71edt | 72edt | 73edt → |
72 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 72edt or 72ed3), is a nonoctave tuning system that divides the interval of 3/1 into 72 equal parts of about 26.4 ¢ each. Each step represents a frequency ratio of 31/72, or the 72nd root of 3.
Intervals
Steps | Cents | Hekts | Approximate ratios |
---|---|---|---|
0 | 0 | 0 | 1/1 |
1 | 26.4 | 18.1 | |
2 | 52.8 | 36.1 | 34/33, 35/34 |
3 | 79.2 | 54.2 | 23/22 |
4 | 105.7 | 72.2 | 33/31 |
5 | 132.1 | 90.3 | |
6 | 158.5 | 108.3 | 34/31 |
7 | 184.9 | 126.4 | |
8 | 211.3 | 144.4 | 26/23, 35/31 |
9 | 237.7 | 162.5 | 31/27 |
10 | 264.2 | 180.6 | |
11 | 290.6 | 198.6 | 13/11 |
12 | 317 | 216.7 | 6/5 |
13 | 343.4 | 234.7 | 28/23 |
14 | 369.8 | 252.8 | |
15 | 396.2 | 270.8 | 34/27 |
16 | 422.7 | 288.9 | 23/18, 37/29 |
17 | 449.1 | 306.9 | 35/27 |
18 | 475.5 | 325 | |
19 | 501.9 | 343.1 | |
20 | 528.3 | 361.1 | 19/14 |
21 | 554.7 | 379.2 | |
22 | 581.2 | 397.2 | |
23 | 607.6 | 415.3 | 27/19 |
24 | 634 | 433.3 | 13/9, 36/25 |
25 | 660.4 | 451.4 | 19/13, 22/15 |
26 | 686.8 | 469.4 | |
27 | 713.2 | 487.5 | |
28 | 739.6 | 505.6 | 23/15 |
29 | 766.1 | 523.6 | 14/9 |
30 | 792.5 | 541.7 | |
31 | 818.9 | 559.7 | |
32 | 845.3 | 577.8 | 31/19 |
33 | 871.7 | 595.8 | 38/23 |
34 | 898.1 | 613.9 | |
35 | 924.6 | 631.9 | 29/17 |
36 | 951 | 650 | 26/15 |
37 | 977.4 | 668.1 | 37/21 |
38 | 1003.8 | 686.1 | 34/19 |
39 | 1030.2 | 704.2 | |
40 | 1056.6 | 722.2 | 35/19 |
41 | 1083.1 | 740.3 | 28/15 |
42 | 1109.5 | 758.3 | |
43 | 1135.9 | 776.4 | 27/14 |
44 | 1162.3 | 794.4 | |
45 | 1188.7 | 812.5 | |
46 | 1215.1 | 830.6 | |
47 | 1241.6 | 848.6 | |
48 | 1268 | 866.7 | 25/12, 27/13 |
49 | 1294.4 | 884.7 | 19/9 |
50 | 1320.8 | 902.8 | |
51 | 1347.2 | 920.8 | 37/17 |
52 | 1373.6 | 938.9 | 31/14 |
53 | 1400.1 | 956.9 | |
54 | 1426.5 | 975 | |
55 | 1452.9 | 993.1 | |
56 | 1479.3 | 1011.1 | |
57 | 1505.7 | 1029.2 | 31/13 |
58 | 1532.1 | 1047.2 | |
59 | 1558.5 | 1065.3 | |
60 | 1585 | 1083.3 | 5/2 |
61 | 1611.4 | 1101.4 | 33/13, 38/15 |
62 | 1637.8 | 1119.4 | |
63 | 1664.2 | 1137.5 | 34/13 |
64 | 1690.6 | 1155.6 | |
65 | 1717 | 1173.6 | 35/13 |
66 | 1743.5 | 1191.7 | |
67 | 1769.9 | 1209.7 | |
68 | 1796.3 | 1227.8 | 31/11 |
69 | 1822.7 | 1245.8 | |
70 | 1849.1 | 1263.9 | |
71 | 1875.5 | 1281.9 | |
72 | 1902 | 1300 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -11.3 | +0.0 | +3.9 | -12.6 | -11.3 | +12.4 | -7.4 | +0.0 | +2.5 | -4.0 | +3.9 |
Relative (%) | -42.7 | +0.0 | +14.6 | -47.8 | -42.7 | +47.0 | -28.1 | +0.0 | +9.5 | -15.1 | +14.6 | |
Steps (reduced) |
45 (45) |
72 (0) |
91 (19) |
105 (33) |
117 (45) |
128 (56) |
136 (64) |
144 (0) |
151 (7) |
157 (13) |
163 (19) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.6 | +1.1 | -12.6 | +7.7 | +8.4 | -11.3 | +0.8 | -8.8 | +12.4 | +11.1 | -13.0 |
Relative (%) | -10.0 | +4.4 | -47.8 | +29.2 | +31.9 | -42.7 | +3.0 | -33.2 | +47.0 | +42.2 | -49.2 | |
Steps (reduced) |
168 (24) |
173 (29) |
177 (33) |
182 (38) |
186 (42) |
189 (45) |
193 (49) |
196 (52) |
200 (56) |
203 (59) |
205 (61) |