71edt
Jump to navigation
Jump to search
Prime factorization
71 (prime)
Step size
26.7881¢
Octave
45\71edt (1205.46¢)
Consistency limit
7
Distinct consistency limit
7
← 70edt | 71edt | 72edt → |
71EDT is the equal division of the third harmonic into 71 parts of 26.7881 cents each, corresponding to 44.7960 edo (45edo with 5.4644 cents octave stretch). It is related to the 13-limit temperament which tempers out 540/539, 1575/1573, 2200/2197, and 4375/4374, which is supported by 45edo (45ef val), 179edo (179ef val), 224edo, 269edo (269ce val), and 403edo (403def val).
71EDT is the 13th no-twos zeta peak EDT.
Harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +5.5 | +0.0 | -0.4 | +6.5 | +0.8 | +6.3 | -2.7 | -7.8 | +9.7 | +10.2 | +1.9 |
Relative (%) | +20.4 | +0.0 | -1.3 | +24.2 | +3.1 | +23.5 | -10.2 | -29.0 | +36.2 | +38.2 | +7.2 | |
Steps (reduced) |
45 (45) |
71 (0) |
104 (33) |
126 (55) |
155 (13) |
166 (24) |
183 (41) |
190 (48) |
203 (61) |
218 (5) |
222 (9) |
Harmonic | 37 | 41 | 43 | 47 | 53 | 59 | 61 | 67 | 71 | 73 | 79 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -9.7 | +0.1 | -2.0 | +4.7 | +11.0 | +12.9 | +8.7 | +7.1 | -13.0 | -7.5 | -10.3 |
Relative (%) | -36.3 | +0.3 | -7.5 | +17.7 | +41.2 | +48.1 | +32.7 | +26.3 | -48.4 | -27.9 | -38.4 | |
Steps (reduced) |
233 (20) |
240 (27) |
243 (30) |
249 (36) |
257 (44) |
264 (51) |
266 (53) |
272 (59) |
275 (62) |
277 (64) |
282 (69) |
Intervals
degree | cents value | hekts | corresponding JI intervals |
comments |
---|---|---|---|---|
0 | exact 1/1 | |||
1 | 26.7881 | 18.3099 | 66/65 | |
2 | 53.5762 | 36.6197 | 65/63 | |
3 | 80.3643 | 54.9296 | 22/21 | |
4 | 107.1524 | 73.2394 | 117/110 | |
5 | 133.9405 | 91.5493 | 27/25 | |
6 | 160.7286 | 109.85915 | 169/154 | |
7 | 187.5167 | 128.169 | 39/35 | |
8 | 214.3048 | 146.4789 | 147/130, 198/175 | |
9 | 241.0929 | 164.7887 | 169/147 | |
10 | 267.8810 | 183.0986 | 7/6 | |
11 | 294.6691 | 201.40845 | 77/65 | |
12 | 321.4572 | 219.7183 | 65/54 | |
13 | 348.2453 | 238.0282 | 11/9 | |
14 | 375.0334 | 256.338 | 273/220 | |
15 | 401.8215 | 274.6479 | 63/50 | |
16 | 428.6096 | 292.95775 | 169/132 | |
17 | 455.3977 | 311.2676 | 13/10 | |
18 | 482.1858 | 329.5775 | 33/25 | |
19 | 508.9739 | 347.8873 | 169/126 | |
20 | 535.7620 | 366.1972 | 15/11 | |
21 | 562.5501 | 384.507 | 18/13 | |
22 | 589.3382 | 402.8169 | (45/32) | |
23 | 616.1263 | 421.1268 | 10/7 | |
24 | 642.9144 | 439.4366 | 132/91 | |
25 | 669.7025 | 457.7465 | 22/15 | |
26 | 696.4906 | 476.0563 | 486/325, 220/147 | pseudo-3/2 |
27 | 723.2787 | 494.3662 | 50/33 | |
28 | 750.0668 | 512.6761 | 54/35 | |
29 | 776.8549 | 530.9859 | 264/169 | |
30 | 803.643 | 549.2958 | 35/22 | |
31 | 830.4311 | 567.6056 | 21/13 | |
32 | 857.2192 | 585.9155 | 18/11 | |
33 | 884.0073 | 604.22535 | 5/3 | |
34 | 910.7954 | 622.5352 | 22/13 | |
35 | 937.5835 | 640.8451 | 12/7 | |
36 | 964.3715 | 659.1549 | 7/4 | |
37 | 991.1596 | 677.4648 | 39/22 | |
38 | 1017.9477 | 695.77465 | 9/5 | |
39 | 1044.7358 | 714.0845 | 11/6 | |
40 | 1071.5239 | 732.3944 | 13/7 | |
41 | 1098.312 | 750.7042 | 66/35 | |
42 | 1125.1001 | 769.0141 | 21/11 | |
43 | 1151.8882 | 787.3239 | 35/18 | |
44 | 1178.6763 | 805.6338 | 22/13 | |
45 | 1205.4644 | 823.9437 | 441/220, 325/162 | pseudo-octave |
46 | 1232.2525 | 842.2535 | 45/22 | |
47 | 1259.0406 | 860.5634 | 91/44 | |
48 | 1285.8287 | 878.8732 | 21/10 | |
49 | 1312.6168 | 897.1831 | (32/15) | |
50 | 1339.4049 | 915.493 | 13/6 | |
51 | 1366.193 | 933.8028 | 11/5 | |
52 | 1392.9811 | 952.1127 | 378/169 | |
53 | 1419.7692 | 970.4225 | 25/11 | |
54 | 1446.5573 | 988.7324 | 30/13 | |
55 | 1473.3454 | 1007.04225 | 396/169 | |
56 | 1500.1335 | 1025.3521 | 50/21 | |
57 | 1526.9216 | 1043.662 | 220/91 | |
58 | 1553.7097 | 1061.9718 | 27/11 | |
59 | 1580.4978 | 1080.2817 | 162/65 | |
60 | 1607.2859 | 1098.59155 | 195/77 | |
61 | 1634.0740 | 1161.9014 | 18/7 | |
62 | 1660.8621 | 1135.2113 | 441/169 | |
63 | 1687.6502 | 1153.5211 | 175/66, 130/49 | |
64 | 1714.4383 | 1171.831 | 35/13, 132/49 | |
65 | 1741.2264 | 1190.14085 | 462/169 | |
66 | 1768.0145 | 1208.4507 | 25/9 | |
67 | 1794.8026 | 1226.7606 | 110/39 | |
68 | 1821.5907 | 1245.0704 | 63/22 | |
69 | 1848.3788 | 1263.3803 | 189/65 | |
70 | 1875.1669 | 1281.6901 | 65/22 | |
71 | 1901.9550 | 1300 | exact 3/1 | just perfect fifth plus an octave |