26ed5/4

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 25ed5/426ed5/427ed5/4 →
Prime factorization 2 × 13
Step size 14.8582¢ 
Octave 81\26ed5/4 (1203.52¢)
Twelfth 128\26ed5/4 (1901.85¢) (→64\13ed5/4)
Consistency limit 7
Distinct consistency limit 6

26 equal divisions of 5/4 (abbreviated 26ed5/4) is a nonoctave tuning system that divides the interval of 5/4 into 26 equal parts of about 14.9 ¢ each. Each step represents a frequency ratio of (5/4)1/26, or the 26th root of 5/4.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 14.858
2 29.716
3 44.575
4 59.433 26/25
5 74.291 21/20, 22/21, 23/22, 25/24
6 89.149 19/18
7 104.008 18/17
8 118.866 15/14, 16/15
9 133.724 13/12, 14/13
10 148.582 23/21
11 163.44
12 178.299 21/19
13 193.157 9/8, 10/9, 19/17
14 208.015 17/15
15 222.873 26/23
16 237.732 8/7
17 252.59 15/13, 22/19
18 267.448 7/6
19 282.306
20 297.164 13/11
21 312.023 6/5, 25/21
22 326.881 17/14, 23/19
23 341.739 11/9
24 356.597
25 371.455 21/17, 26/21
26 386.314 5/4

Harmonics

Approximation of harmonics in 26ed5/4
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +3.52 -0.10 +7.03 +7.03 +3.41 +3.99 -4.31 -0.21 -4.31 -5.87 +6.93
Relative (%) +23.7 -0.7 +47.3 +47.3 +23.0 +26.9 -29.0 -1.4 -29.0 -39.5 +46.6
Steps
(reduced)
81
(3)
128
(24)
162
(6)
188
(6)
209
(1)
227
(19)
242
(8)
256
(22)
268
(8)
279
(19)
290
(4)
Approximation of harmonics in 26ed5/4
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +2.08 -7.35 +6.93 -0.80 -1.74 +3.31 -1.14 -0.80 +3.89 -2.36 -5.02
Relative (%) +14.0 -49.5 +46.6 -5.4 -11.7 +22.3 -7.7 -5.4 +26.2 -15.9 -33.8
Steps
(reduced)
299
(13)
307
(21)
316
(4)
323
(11)
330
(18)
337
(25)
343
(5)
349
(11)
355
(17)
360
(22)
365
(1)