27ed5/4

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 26ed5/427ed5/428ed5/4 →
Prime factorization 33
Step size 14.3079¢ 
Octave 84\27ed5/4 (1201.86¢) (→28\9ed5/4)
Twelfth 133\27ed5/4 (1902.95¢)
(semiconvergent)
Consistency limit 6
Distinct consistency limit 6

27 equal divisions of 5/4 (abbreviated 27ed5/4) is a nonoctave tuning system that divides the interval of 5/4 into 27 equal parts of about 14.3 ¢ each. Each step represents a frequency ratio of (5/4)1/27, or the 27th root of 5/4.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 14.308
2 28.616
3 42.924
4 57.232 26/25
5 71.54 23/22, 25/24
6 85.847 19/18, 22/21
7 100.155 17/16, 18/17, 20/19
8 114.463 16/15
9 128.771 13/12, 14/13, 15/14
10 143.079
11 157.387 11/10, 12/11, 23/21
12 171.695 21/19
13 186.003 10/9, 19/17
14 200.311 9/8
15 214.619 17/15, 26/23
16 228.927 25/22
17 243.235
18 257.542 7/6, 15/13, 22/19
19 271.85
20 286.158 13/11, 19/16, 20/17
21 300.466
22 314.774 6/5
23 329.082 23/19
24 343.39 11/9, 17/14
25 357.698 21/17
26 372.006 26/21
27 386.314 5/4

Harmonics

Approximation of harmonics in 27ed5/4
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +1.86 +1.00 +3.73 +3.73 +2.86 -6.47 +5.59 +2.00 +5.59 -2.02 +4.73
Relative (%) +13.0 +7.0 +26.1 +26.1 +20.0 -45.2 +39.1 +13.9 +39.1 -14.1 +33.0
Steps
(reduced)
84
(3)
133
(25)
168
(6)
195
(6)
217
(1)
235
(19)
252
(9)
266
(23)
279
(9)
290
(20)
301
(4)
Approximation of harmonics in 27ed5/4
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -5.07 -4.60 +4.73 -6.85 +2.66 +3.86 -3.90 -6.85 -5.47 -0.16 -5.57
Relative (%) -35.5 -32.2 +33.0 -47.9 +18.6 +27.0 -27.2 -47.9 -38.2 -1.1 -39.0
Steps
(reduced)
310
(13)
319
(22)
328
(4)
335
(11)
343
(19)
350
(26)
356
(5)
362
(11)
368
(17)
374
(23)
379
(1)