28ed5/4

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 27ed5/4 28ed5/4 29ed5/4 →
Prime factorization 22 × 7
Step size 13.7969¢ 
Octave 87\28ed5/4 (1200.33¢)
(semiconvergent)
Twelfth 138\28ed5/4 (1903.97¢) (→69\14ed5/4)
Consistency limit 16
Distinct consistency limit 6

28 equal divisions of 5/4 (abbreviated 28ed5/4) is a nonoctave tuning system that divides the interval of 5/4 into 28 equal parts of about 13.8 ¢ each. Each step represents a frequency ratio of (5/4)1/28, or the 28th root of 5/4.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 13.8
2 27.6
3 41.4
4 55.2
5 69 23/22, 25/24, 26/25, 27/26
6 82.8 19/18, 21/20, 22/21, 24/23
7 96.6 18/17, 20/19
8 110.4 16/15, 17/16
9 124.2 14/13, 15/14
10 138 13/12, 27/25
11 151.8 12/11, 23/21, 25/23
12 165.6 11/10
13 179.4 10/9, 21/19
14 193.2
15 207 9/8
16 220.8 17/15, 25/22, 26/23
17 234.5 8/7, 23/20
18 248.3 15/13
19 262.1 7/6, 22/19
20 275.9 20/17
21 289.7 13/11, 19/16
22 303.5 25/21
23 317.3 6/5
24 331.1 23/19
25 344.9 11/9, 17/14
26 358.7 16/13, 21/17, 27/22
27 372.5 26/21
28 386.3 5/4

Harmonics

Approximation of harmonics in 28ed5/4
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +0.33 +2.02 +0.66 +0.66 +2.35 -2.38 +1.00 +4.04 +1.00 +1.55 +2.68
Relative (%) +2.4 +14.6 +4.8 +4.8 +17.0 -17.2 +7.2 +29.3 +7.2 +11.3 +19.5
Steps
(reduced)
87
(3)
138
(26)
174
(6)
202
(6)
225
(1)
244
(20)
261
(9)
276
(24)
289
(9)
301
(21)
312
(4)
Approximation of harmonics in 28ed5/4
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +2.08 -2.05 +2.68 +1.33 +6.75 +4.37 -6.45 +1.33 -0.36 +1.89 -6.09
Relative (%) +15.1 -14.8 +19.5 +9.6 +48.9 +31.7 -46.8 +9.6 -2.6 +13.7 -44.1
Steps
(reduced)
322
(14)
331
(23)
340
(4)
348
(12)
356
(20)
363
(27)
369
(5)
376
(12)
382
(18)
388
(24)
393
(1)