25ed5/4

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 24ed5/425ed5/426ed5/4 →
Prime factorization 52
Step size 15.4525¢ 
Octave 78\25ed5/4 (1205.3¢)
Twelfth 123\25ed5/4 (1900.66¢)
Consistency limit 3
Distinct consistency limit 3

25 equal divisions of 5/4 (abbreviated 25ed5/4) is a nonoctave tuning system that divides the interval of 5/4 into 25 equal parts of about 15.5 ¢ each. Each step represents a frequency ratio of (5/4)1/25, or the 25th root of 5/4.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 15.453
2 30.905
3 46.358
4 61.81
5 77.263 21/20, 26/25
6 92.715 19/18, 20/19, 22/21
7 108.168 15/14, 18/17
8 123.62
9 139.073 14/13, 25/23
10 154.525 12/11, 23/21
11 169.978 11/10, 21/19
12 185.431 10/9
13 200.883 19/17
14 216.336 17/15, 26/23
15 231.788 23/20
16 247.241 15/13
17 262.693 7/6, 22/19
18 278.146 13/11
19 293.598 20/17, 25/21
20 309.051
21 324.504 6/5, 17/14, 23/19
22 339.956
23 355.409 11/9
24 370.861 21/17, 26/21
25 386.314

Harmonics

Approximation of harmonics in 25ed5/4
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +5.30 -1.29 -4.85 -4.85 +4.01 -0.17 +0.44 -2.58 +0.44 +5.42 -6.15
Relative (%) +34.3 -8.4 -31.4 -31.4 +25.9 -1.1 +2.9 -16.7 +2.9 +35.1 -39.8
Steps
(reduced)
78
(3)
123
(23)
155
(5)
180
(5)
201
(1)
218
(18)
233
(8)
246
(21)
258
(8)
269
(19)
278
(3)
Approximation of harmonics in 25ed5/4
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -5.65 +5.13 -6.15 +5.74 -6.50 +2.72 +1.83 +5.74 -1.46 -4.74 -4.43
Relative (%) -36.5 +33.2 -39.8 +37.2 -42.0 +17.6 +11.8 +37.2 -9.5 -30.6 -28.7
Steps
(reduced)
287
(12)
296
(21)
303
(3)
311
(11)
317
(17)
324
(24)
330
(5)
336
(11)
341
(16)
346
(21)
351
(1)