4ed5/3

From Xenharmonic Wiki
Jump to navigation Jump to search
← 3ed5/3 4ed5/3 5ed5/3 →
Prime factorization 22
Step size 221.09¢ 
Octave 5\4ed5/3 (1105.45¢)
Twelfth 9\4ed5/3 (1989.81¢)
Consistency limit 2
Distinct consistency limit 2
Special properties

4 equal divisions of 5/3 (abbreviated 4ed5/3) is a nonoctave tuning system that divides the interval of 5/3 into 4 equal parts of about 221⁠ ⁠¢ each. Each step represents a frequency ratio of (5/3)1/4, or the 4th root of 5/3.

Theory

This tuning tempers out 10/9 in the 5-limit; 8/7 in the 7-limit; 12/11 and 22/21 in the 11-limit; 14/13 and 16/13 in the 13-limit; 17/15 in the 17-limit; 19/18 and 20/19 in the 19-limit; 26/23 and 28/23 in the 23-limit; 29/25 in the 29-limit; 31/30 in the 31-limit; and 43/41 in the 41-limit.

Intervals

Steps Cents Approximate ratios
0 0 1/1, 19/18, 20/19
1 221.1 6/5, 7/6, 11/10, 13/11, 13/12, 19/17, 20/17, 21/19
2 442.2 13/10, 17/13, 21/17
3 663.3 10/7, 17/11, 17/12, 19/13, 20/13
4 884.4 5/3, 12/7, 17/10, 18/11, 19/11, 19/12, 21/13

Harmonics

Approximation of prime harmonics in 4ed5/3
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -94.6 +87.9 +87.9 -52.5 +49.4 -18.7 -41.0 -12.5 +99.0 -81.2 +24.4
Relative (%) -42.8 +39.7 +39.7 -23.7 +22.3 -8.5 -18.5 -5.6 +44.8 -36.7 +11.0
Steps
(reduced)
5
(1)
9
(1)
13
(1)
15
(3)
19
(3)
20
(0)
22
(2)
23
(3)
25
(1)
26
(2)
27
(3)
Approximation of prime harmonics in 4ed5/3
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) -60.8 -17.5 -99.9 -32.8 -19.7 +15.7 -42.0 +16.7 -83.7 +89.3 -47.5
Relative (%) -27.5 -7.9 -45.2 -14.8 -8.9 +7.1 -19.0 +7.5 -37.9 +40.4 -21.5
Steps
(reduced)
28
(0)
29
(1)
29
(1)
30
(2)
31
(3)
32
(0)
32
(0)
33
(1)
33
(1)
34
(2)
34
(2)