32ed5/4

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 31ed5/432ed5/433ed5/4 →
Prime factorization 25
Step size 12.0723¢ 
Octave 99\32ed5/4 (1195.16¢)
Twelfth 158\32ed5/4 (1907.42¢) (→79\16ed5/4)
Consistency limit 2
Distinct consistency limit 2

32 equal divisions of 5/4 (abbreviated 32ed5/4) is a nonoctave tuning system that divides the interval of 5/4 into 32 equal parts of about 12.1 ¢ each. Each step represents a frequency ratio of (5/4)1/32, or the 32nd root of 5/4.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 12.072
2 24.145
3 36.217
4 48.289
5 60.362 26/25
6 72.434 22/21
7 84.506 19/18, 20/19, 23/22
8 96.578
9 108.651
10 120.723 14/13
11 132.795
12 144.868 12/11, 13/12, 25/23
13 156.94 23/21
14 169.012 11/10
15 181.085 21/19
16 193.157 19/17
17 205.229 26/23
18 217.301
19 229.374 25/22
20 241.446
21 253.518 15/13, 22/19
22 265.591 7/6
23 277.663 20/17
24 289.735 13/11
25 301.808 25/21
26 313.88 6/5
27 325.952
28 338.024 17/14, 23/19
29 350.097
30 362.169 26/21
31 374.241 21/17
32 386.314

Harmonics

Approximation of harmonics in 32ed5/4
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -4.84 +5.47 +2.39 +2.39 +0.63 -0.65 -2.45 -1.13 -2.45 +1.55 -4.21
Relative (%) -40.1 +45.3 +19.8 +19.8 +5.2 -5.4 -20.3 -9.4 -20.3 +12.9 -34.9
Steps
(reduced)
99
(3)
158
(30)
199
(7)
231
(7)
257
(1)
279
(23)
298
(10)
315
(27)
330
(10)
344
(24)
356
(4)
Approximation of harmonics in 32ed5/4
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +2.08 -5.50 -4.21 +4.78 -3.60 -5.98 -3.00 +4.78 +4.82 -3.29 +4.26
Relative (%) +17.2 -45.5 -34.9 +39.6 -29.8 -49.5 -24.9 +39.6 +39.9 -27.2 +35.3
Steps
(reduced)
368
(16)
378
(26)
388
(4)
398
(14)
406
(22)
414
(30)
422
(6)
430
(14)
437
(21)
443
(27)
450
(2)