31ed5/4

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 30ed5/4 31ed5/4 32ed5/4 →
Prime factorization 31 (prime)
Step size 12.4617¢ 
Octave 96\31ed5/4 (1196.33¢)
Twelfth 153\31ed5/4 (1906.65¢)
Consistency limit 2
Distinct consistency limit 2

31 equal divisions of 5/4 (abbreviated 31ed5/4) is a nonoctave tuning system that divides the interval of 5/4 into 31 equal parts of about 12.5⁠ ⁠¢ each. Each step represents a frequency ratio of (5/4)1/31, or the 31st root of 5/4.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 12.5
2 24.9
3 37.4
4 49.8
5 62.3
6 74.8 22/21
7 87.2 19/18, 20/19, 21/20
8 99.7 18/17
9 112.2
10 124.6 14/13
11 137.1 13/12, 27/25
12 149.5 12/11, 25/23
13 162 11/10, 23/21
14 174.5 10/9, 21/19
15 186.9 19/17
16 199.4
17 211.8 17/15
18 224.3 8/7
19 236.8
20 249.2 22/19, 23/20
21 261.7 7/6
22 274.2 20/17
23 286.6 13/11, 27/23
24 299.1
25 311.5 6/5, 25/21
26 324
27 336.5 23/19
28 348.9
29 361.4 21/17, 26/21
30 373.9
31 386.3

Harmonics

Approximation of harmonics in 31ed5/4
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -3.67 +4.69 +5.11 +5.11 +1.02 -4.16 +1.44 -3.08 +1.44 -1.56 -2.66
Relative (%) -29.5 +37.6 +41.0 +41.0 +8.2 -33.4 +11.6 -24.7 +11.6 -12.5 -21.3
Steps
(reduced)
96
(3)
153
(29)
193
(7)
224
(7)
249
(1)
270
(22)
289
(10)
305
(26)
320
(10)
333
(23)
345
(4)
Approximation of harmonics in 31ed5/4
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -4.15 +4.63 -2.66 -2.23 +4.97 +5.71 -0.66 -2.23 +0.53 -5.23 +5.04
Relative (%) -33.3 +37.2 -21.3 -17.9 +39.9 +45.8 -5.3 -17.9 +4.3 -42.0 +40.5
Steps
(reduced)
356
(15)
367
(26)
376
(4)
385
(13)
394
(22)
402
(30)
409
(6)
416
(13)
423
(20)
429
(26)
436
(2)