33ed5/4

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 32ed5/433ed5/434ed5/4 →
Prime factorization 3 × 11
Step size 11.7065¢ 
Octave 103\33ed5/4 (1205.77¢)
Twelfth 162\33ed5/4 (1896.45¢) (→54\11ed5/4)
Consistency limit 2
Distinct consistency limit 2

33 equal divisions of 5/4 (abbreviated 33ed5/4) is a nonoctave tuning system that divides the interval of 5/4 into 33 equal parts of about 11.7 ¢ each. Each step represents a frequency ratio of (5/4)1/33, or the 33rd root of 5/4.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 11.706
2 23.413
3 35.119
4 46.826
5 58.532
6 70.239 23/22, 26/25
7 81.945 24/23
8 93.652 18/17, 19/18
9 105.358
10 117.065
11 128.771
12 140.478 25/23
13 152.184 12/11
14 163.891 11/10, 23/21
15 175.597 21/19
16 187.304 19/17
17 199.01
18 210.717 26/23
19 222.423 17/15
20 234.13 23/20
21 245.836 15/13
22 257.542
23 269.249 7/6
24 280.955 13/11
25 292.662
26 304.368 25/21
27 316.075 6/5
28 327.781 17/14
29 339.488 23/19
30 351.194
31 362.901 21/17
32 374.607 26/21
33 386.314

Harmonics

Approximation of harmonics in 33ed5/4
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +5.77 -5.51 -0.17 -0.17 +0.26 +2.64 +5.59 +0.69 +5.59 +4.48 -5.68
Relative (%) +49.3 -47.0 -1.5 -1.5 +2.2 +22.5 +47.8 +5.9 +47.8 +38.3 -48.5
Steps
(reduced)
103
(4)
162
(30)
205
(7)
238
(7)
265
(1)
288
(24)
308
(11)
325
(28)
341
(11)
355
(25)
367
(4)
Approximation of harmonics in 33ed5/4
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -3.77 -3.30 -5.68 -0.34 +0.06 -5.24 -5.20 -0.34 -2.87 -1.46 +3.53
Relative (%) -32.2 -28.2 -48.5 -2.9 +0.5 -44.8 -44.4 -2.9 -24.5 -12.5 +30.2
Steps
(reduced)
379
(16)
390
(27)
400
(4)
410
(14)
419
(23)
427
(31)
435
(6)
443
(14)
450
(21)
457
(28)
464
(2)