20edt
Jump to navigation
Jump to search
Prime factorization
22 × 5
Step size
95.0978¢
Octave
13\20edt (1236.27¢)
Consistency limit
2
Distinct consistency limit
2
← 19edt | 20edt | 21edt → |
20 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 20edt or 20ed3), is a nonoctave tuning system that divides the interval of 3/1 into 20 equal parts of about 95.1 ¢ each. Each step represents a frequency ratio of 31/20, or the 20th root of 3. It corresponds to 12.6186 edo.
Intervals
degree | cents value | hekts | corresponding JI intervals |
comments |
---|---|---|---|---|
0 | exact 1/1 | |||
1 | 95.0978 | 65 | ||
2 | 190.1955 | 130 | ||
3 | 285.2933 | 195 | 33/28, 13/11 | |
4 | 380.391 | 260 | 5/4 | |
5 | 475.4888 | 325 | ||
6 | 570.5865 | 390 | 39/28 | |
7 | 665.6843 | 455 | 22/15 | |
8 | 760.7820 | 520 | ||
9 | 855.8798 | 585 | 18/11 | |
10 | 950.9775 | 650 | 45/26, 26/15 | |
11 | 1046.0753 | 725 | 11/6 | |
12 | 1141.173 | 780 | ||
13 | 1236.2708 | 845 | 45/22 | |
14 | 1331.3685 | 910 | 28/13 | |
15 | 1426.4663 | 975 | ||
16 | 1521.564 | 1040 | 12/5 | |
17 | 1616.6618 | 1105 | 33/13, 28/11 | |
18 | 1711.7595 | 1170 | ||
19 | 1806.8573 | 1235 | ||
20 | 1901.955 | 1300 | exact 3/1 | just perfect fifth plus an octave |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +36.3 | +0.0 | -22.6 | -28.5 | +36.3 | -40.4 | +13.7 | +0.0 | +7.8 | +33.0 | -22.6 |
Relative (%) | +38.1 | +0.0 | -23.7 | -29.9 | +38.1 | -42.5 | +14.4 | +0.0 | +8.2 | +34.7 | -23.7 | |
Steps (reduced) |
13 (13) |
20 (0) |
25 (5) |
29 (9) |
33 (13) |
35 (15) |
38 (18) |
40 (0) |
42 (2) |
44 (4) |
45 (5) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +29.1 | -4.1 | -28.5 | -45.1 | +40.1 | +36.3 | +37.8 | +44.1 | -40.4 | -25.8 | -7.7 |
Relative (%) | +30.6 | -4.3 | -29.9 | -47.4 | +42.2 | +38.1 | +39.7 | +46.3 | -42.5 | -27.2 | -8.1 | |
Steps (reduced) |
47 (7) |
48 (8) |
49 (9) |
50 (10) |
52 (12) |
53 (13) |
54 (14) |
55 (15) |
55 (15) |
56 (16) |
57 (17) |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |