20edt

From Xenharmonic Wiki
Jump to navigation Jump to search
← 19edt20edt21edt →
Prime factorization 22 × 5
Step size 95.0978¢ 
Octave 13\20edt (1236.27¢)
Consistency limit 2
Distinct consistency limit 2

20 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 20edt or 20ed3), is a nonoctave tuning system that divides the interval of 3/1 into 20 equal parts of about 95.1 ¢ each. Each step represents a frequency ratio of 31/20, or the 20th root of 3. It corresponds to 12.6186 edo.

Intervals

degree cents value hekts corresponding
JI intervals
comments
0 exact 1/1
1 95.0978 65
2 190.1955 130
3 285.2933 195 33/28, 13/11
4 380.391 260 5/4
5 475.4888 325
6 570.5865 390 39/28
7 665.6843 455 22/15
8 760.7820 520
9 855.8798 585 18/11
10 950.9775 650 45/26, 26/15
11 1046.0753 725 11/6
12 1141.173 780
13 1236.2708 845 45/22
14 1331.3685 910 28/13
15 1426.4663 975
16 1521.564 1040 12/5
17 1616.6618 1105 33/13, 28/11
18 1711.7595 1170
19 1806.8573 1235
20 1901.955 1300 exact 3/1 just perfect fifth plus an octave

Harmonics

Approximation of harmonics in 20edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +36.3 +0.0 -22.6 -28.5 +36.3 -40.4 +13.7 +0.0 +7.8 +33.0 -22.6
Relative (%) +38.1 +0.0 -23.7 -29.9 +38.1 -42.5 +14.4 +0.0 +8.2 +34.7 -23.7
Steps
(reduced)
13
(13)
20
(0)
25
(5)
29
(9)
33
(13)
35
(15)
38
(18)
40
(0)
42
(2)
44
(4)
45
(5)
Approximation of harmonics in 20edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +29.1 -4.1 -28.5 -45.1 +40.1 +36.3 +37.8 +44.1 -40.4 -25.8 -7.7
Relative (%) +30.6 -4.3 -29.9 -47.4 +42.2 +38.1 +39.7 +46.3 -42.5 -27.2 -8.1
Steps
(reduced)
47
(7)
48
(8)
49
(9)
50
(10)
52
(12)
53
(13)
54
(14)
55
(15)
55
(15)
56
(16)
57
(17)