21ed5/3
Jump to navigation
Jump to search
Prime factorization
3 × 7
Step size
42.1123¢
Octave
28\21ed5/3 (1179.14¢) (→4\3ed5/3)
Twelfth
45\21ed5/3 (1895.05¢) (→15\7ed5/3)
Consistency limit
3
Distinct consistency limit
3
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 20ed5/3 | 21ed5/3 | 22ed5/3 → |
21 equal divisions of 5/3 (abbreviated 21ed5/3) is a nonoctave tuning system that divides the interval of 5/3 into 21 equal parts of about 42.1 ¢ each. Each step represents a frequency ratio of (5/3)1/21, or the 21st root of 5/3.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 42.112 | |
2 | 84.225 | 18/17, 22/21, 23/22 |
3 | 126.337 | 14/13, 15/14 |
4 | 168.449 | 10/9, 21/19, 23/21 |
5 | 210.562 | 17/15, 25/22 |
6 | 252.674 | 15/13, 22/19 |
7 | 294.786 | 25/21 |
8 | 336.899 | 17/14, 23/19 |
9 | 379.011 | 21/17 |
10 | 421.123 | 9/7, 19/15 |
11 | 463.236 | 13/10, 17/13, 25/19 |
12 | 505.348 | |
13 | 547.46 | |
14 | 589.572 | 7/5 |
15 | 631.685 | 13/9 |
16 | 673.797 | 22/15, 25/17 |
17 | 715.909 | 3/2 |
18 | 758.022 | 14/9 |
19 | 800.134 | |
20 | 842.246 | 21/13 |
21 | 884.359 | 5/3 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -20.9 | -6.9 | +0.4 | -6.9 | +14.4 | +0.2 | -20.5 | -13.8 | +14.4 | +17.8 | -6.5 |
Relative (%) | -49.5 | -16.4 | +1.0 | -16.4 | +34.1 | +0.4 | -48.6 | -32.8 | +34.1 | +42.3 | -15.4 | |
Steps (reduced) |
28 (7) |
45 (3) |
57 (15) |
66 (3) |
74 (11) |
80 (17) |
85 (1) |
90 (6) |
95 (11) |
99 (15) |
102 (18) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -18.7 | -20.7 | -13.8 | +0.8 | -19.9 | +7.5 | -1.9 | -6.5 | -6.7 | -3.1 | +4.2 |
Relative (%) | -44.5 | -49.1 | -32.8 | +1.9 | -47.3 | +17.7 | -4.6 | -15.4 | -16.0 | -7.3 | +10.0 | |
Steps (reduced) |
105 (0) |
108 (3) |
111 (6) |
114 (9) |
116 (11) |
119 (14) |
121 (16) |
123 (18) |
125 (20) |
127 (1) |
129 (3) |