3edf

From Xenharmonic Wiki
Jump to: navigation, search

3EDF, if the attempt is made to use it as an actual scale, would divide the just perfect fifth into three equal parts, each of size 233.985 cents, which is to say (3/2)^(1/3) as a frequency ratio. It corresponds to 5.1285 edo. If we want to consider it to be a temperament, it tempers out 16/15, 21/20, 28/27, 81/80, and 256/243 as well as 5edo.

Factoids about 3EDF

3EDF is related to the gamelismic temperaments, which temper out 1029/1024 in the 7-limit.

Intervals

ed233\420-5¢ ed31\54 ed121/81 (~ed11\19) ed696¢ ed32\55 ed700¢= ed3/2 Pyrite ed708¢ ed122/81 (~ed13\22) ed34\57 ed37\60+5¢
(~ed17\29) (~ed10\17)
1 220.238-221.905 229.63 231.605 232 232.727 233.333 233.985 234.545 235.285 236 236.355 238.597 246.667-248.333
2 440.476-443.8095 259.259 463.211 464 465.4545 466.667 467.97 469.091 470.57 472 472.71 477.193 493.333-496.667
3 660.714-665.714 688.888 694.816 696 698.182 700 701.995 703.636 705.8885 708 709.065 715.7895 740-745
4 880.952-887.619 918.5185 926.421 928 930.909 933.333 935.94 938.181 941.141 944 945.42 954.386 986.667-993.333
5 1101.1905-1109.524 1148.148 1158.0265 1160 1163.636 1166.667 1169.925 1172.727 1176.426 1180 1181.775 1192.9825 1233.333-1241.667
6 1321.429-1331.429 1377.778 1389.632 1392 1396.364 1400 1403.91 1407.272 1411.711 1416 1418.13 1431.579 1480-1490