61edt
Jump to navigation
Jump to search
Prime factorization
61 (prime)
Step size
31.1796¢
Octave
38\61edt (1184.82¢)
Consistency limit
2
Distinct consistency limit
2
← 60edt | 61edt | 62edt → |
61 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 61edt or 61ed3), is a nonoctave tuning system that divides the interval of 3/1 into 61 equal parts of about 31.2 ¢ each. Each step represents a frequency ratio of 31/61, or the 61st root of 3.
61edt provides a good tuning of mintaka temperament in the 3.7.11 subgroup, and contains an intersection of it with Bohlen-Pierce-Stearns, despite the 5th harmonic being rather far from accurate. Notably, the octave is almost halfway in between steps, and therefore this system minimizes the prospect of a shimmering octave appearing, although it has a good 4th harmonic.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 31.18 | |
2 | 62.359 | |
3 | 93.539 | 19/18 |
4 | 124.718 | 14/13, 29/27 |
5 | 155.898 | 23/21 |
6 | 187.078 | |
7 | 218.257 | 17/15, 25/22 |
8 | 249.437 | 15/13, 22/19 |
9 | 280.616 | 27/23 |
10 | 311.796 | 6/5 |
11 | 342.975 | |
12 | 374.155 | |
13 | 405.335 | 19/15, 29/23 |
14 | 436.514 | 9/7 |
15 | 467.694 | 17/13 |
16 | 498.873 | |
17 | 530.053 | 19/14, 34/25 |
18 | 561.233 | 18/13, 29/21 |
19 | 592.412 | |
20 | 623.592 | 33/23 |
21 | 654.771 | 19/13 |
22 | 685.951 | |
23 | 717.131 | |
24 | 748.31 | |
25 | 779.49 | 11/7 |
26 | 810.669 | |
27 | 841.849 | |
28 | 873.029 | |
29 | 904.208 | |
30 | 935.388 | |
31 | 966.567 | |
32 | 997.747 | |
33 | 1028.926 | |
34 | 1060.106 | 35/19 |
35 | 1091.286 | |
36 | 1122.465 | 21/11 |
37 | 1153.645 | 35/18 |
38 | 1184.824 | |
39 | 1216.004 | |
40 | 1247.184 | 35/17 |
41 | 1278.363 | 23/11 |
42 | 1309.543 | |
43 | 1340.722 | 13/6 |
44 | 1371.902 | |
45 | 1403.082 | |
46 | 1434.261 | |
47 | 1465.441 | 7/3 |
48 | 1496.62 | |
49 | 1527.8 | |
50 | 1558.98 | |
51 | 1590.159 | 5/2 |
52 | 1621.339 | 23/9 |
53 | 1652.518 | 13/5 |
54 | 1683.698 | |
55 | 1714.877 | 35/13 |
56 | 1746.057 | |
57 | 1777.237 | |
58 | 1808.416 | |
59 | 1839.596 | |
60 | 1870.775 | |
61 | 1901.955 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -15.2 | +0.0 | -11.3 | -1.4 | -4.4 | -13.0 | -9.8 | -15.2 | -3.0 |
Relative (%) | -48.7 | +0.0 | -36.3 | -4.6 | -14.2 | -41.8 | -31.3 | -48.9 | -9.7 | |
Steps (reduced) |
38 (38) |
61 (0) |
89 (28) |
108 (47) |
133 (11) |
142 (20) |
157 (35) |
163 (41) |
174 (52) |
Harmonic | 25 | 27 | 29 | 31 | 33 | 35 | 37 | 39 | 41 | 43 | 45 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +8.5 | +0.0 | +1.0 | +10.3 | -4.4 | -12.8 | -15.4 | -13.0 | -6.1 | +5.0 | -11.3 |
Relative (%) | +27.3 | +0.0 | +3.2 | +32.9 | -14.2 | -40.9 | -49.5 | -41.8 | -19.5 | +16.1 | -36.3 | |
Steps (reduced) |
179 (57) |
183 (0) |
187 (4) |
191 (8) |
194 (11) |
197 (14) |
200 (17) |
203 (20) |
206 (23) |
209 (26) |
211 (28) |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |