61edt

From Xenharmonic Wiki
Jump to navigation Jump to search
← 60edt 61edt 62edt →
Prime factorization 61 (prime)
Step size 31.1796¢ 
Octave 38\61edt (1184.82¢)
Consistency limit 2
Distinct consistency limit 2

61 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 61edt or 61ed3), is a nonoctave tuning system that divides the interval of 3/1 into 61 equal parts of about 31.2 ¢ each. Each step represents a frequency ratio of 31/61, or the 61st root of 3.

61edt provides a good tuning of mintaka temperament in the 3.7.11 subgroup, and contains an intersection of it with Bohlen-Pierce-Stearns, despite the 5th harmonic being rather far from accurate. Notably, the octave is almost halfway in between steps, and therefore this system minimizes the prospect of a shimmering octave appearing, although it has a good 4th harmonic.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 31.18
2 62.359
3 93.539 19/18
4 124.718 14/13, 29/27
5 155.898 23/21
6 187.078
7 218.257 17/15, 25/22
8 249.437 15/13, 22/19
9 280.616 27/23
10 311.796 6/5
11 342.975
12 374.155
13 405.335 19/15, 29/23
14 436.514 9/7
15 467.694 17/13
16 498.873
17 530.053 19/14, 34/25
18 561.233 18/13, 29/21
19 592.412
20 623.592 33/23
21 654.771 19/13
22 685.951
23 717.131
24 748.31
25 779.49 11/7
26 810.669
27 841.849
28 873.029
29 904.208
30 935.388
31 966.567
32 997.747
33 1028.926
34 1060.106 35/19
35 1091.286
36 1122.465 21/11
37 1153.645 35/18
38 1184.824
39 1216.004
40 1247.184 35/17
41 1278.363 23/11
42 1309.543
43 1340.722 13/6
44 1371.902
45 1403.082
46 1434.261
47 1465.441 7/3
48 1496.62
49 1527.8
50 1558.98
51 1590.159 5/2
52 1621.339 23/9
53 1652.518 13/5
54 1683.698
55 1714.877 35/13
56 1746.057
57 1777.237
58 1808.416
59 1839.596
60 1870.775
61 1901.955 3/1

Harmonics

Approximation of prime harmonics in 61edt
Harmonic 2 3 5 7 11 13 17 19 23
Error Absolute (¢) -15.2 +0.0 -11.3 -1.4 -4.4 -13.0 -9.8 -15.2 -3.0
Relative (%) -48.7 +0.0 -36.3 -4.6 -14.2 -41.8 -31.3 -48.9 -9.7
Steps
(reduced)
38
(38)
61
(0)
89
(28)
108
(47)
133
(11)
142
(20)
157
(35)
163
(41)
174
(52)
Approximation of odd harmonics in 61edt
Harmonic 25 27 29 31 33 35 37 39 41 43 45
Error Absolute (¢) +8.5 +0.0 +1.0 +10.3 -4.4 -12.8 -15.4 -13.0 -6.1 +5.0 -11.3
Relative (%) +27.3 +0.0 +3.2 +32.9 -14.2 -40.9 -49.5 -41.8 -19.5 +16.1 -36.3
Steps
(reduced)
179
(57)
183
(0)
187
(4)
191
(8)
194
(11)
197
(14)
200
(17)
203
(20)
206
(23)
209
(26)
211
(28)
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.