60edt
Jump to navigation
Jump to search
Prime factorization
22 × 3 × 5
Step size
31.6993¢
Octave
38\60edt (1204.57¢) (→19\30edt)
Consistency limit
5
Distinct consistency limit
5
Special properties
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 59edt | 60edt | 61edt → |
60 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 60edt or 60ed3), is a nonoctave tuning system that divides the interval of 3/1 into 60 equal parts of about 31.7 ¢ each. Each step represents a frequency ratio of 31/60, or the 60th root of 3.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 31.699 | |
2 | 63.399 | 26/25, 27/26, 28/27, 29/28 |
3 | 95.098 | 18/17, 19/18 |
4 | 126.797 | 14/13, 29/27 |
5 | 158.496 | 23/21, 34/31 |
6 | 190.196 | 19/17, 29/26 |
7 | 221.895 | 25/22, 33/29 |
8 | 253.594 | 22/19, 29/25 |
9 | 285.293 | 13/11, 20/17, 33/28 |
10 | 316.993 | 6/5 |
11 | 348.692 | 11/9 |
12 | 380.391 | |
13 | 412.09 | 19/15, 33/26 |
14 | 443.79 | 22/17, 31/24 |
15 | 475.489 | 25/19, 29/22 |
16 | 507.188 | |
17 | 538.887 | 15/11, 26/19 |
18 | 570.587 | 25/18 |
19 | 602.286 | 17/12 |
20 | 633.985 | 13/9 |
21 | 665.684 | 22/15, 25/17 |
22 | 697.384 | |
23 | 729.083 | 29/19, 35/23 |
24 | 760.782 | 14/9, 31/20 |
25 | 792.481 | 19/12, 30/19 |
26 | 824.181 | 29/18 |
27 | 855.88 | 18/11, 23/14 |
28 | 887.579 | 5/3 |
29 | 919.278 | 17/10 |
30 | 950.978 | 26/15 |
31 | 982.677 | 30/17 |
32 | 1014.376 | 9/5 |
33 | 1046.075 | 11/6 |
34 | 1077.775 | 28/15 |
35 | 1109.474 | 19/10 |
36 | 1141.173 | 27/14, 29/15, 31/16 |
37 | 1172.872 | |
38 | 1204.572 | |
39 | 1236.271 | |
40 | 1267.97 | 25/12, 27/13 |
41 | 1299.669 | |
42 | 1331.369 | 28/13 |
43 | 1363.068 | 11/5 |
44 | 1394.767 | |
45 | 1426.466 | |
46 | 1458.166 | |
47 | 1489.865 | 26/11 |
48 | 1521.564 | |
49 | 1553.263 | 27/11 |
50 | 1584.963 | 5/2 |
51 | 1616.662 | 28/11, 33/13 |
52 | 1648.361 | |
53 | 1680.06 | 29/11 |
54 | 1711.76 | 35/13 |
55 | 1743.459 | |
56 | 1775.158 | |
57 | 1806.857 | 17/6 |
58 | 1838.557 | 26/9 |
59 | 1870.256 | |
60 | 1901.955 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +4.6 | +0.0 | +9.1 | +3.2 | +4.6 | -8.7 | +13.7 | +0.0 | +7.8 | +1.3 | +9.1 |
Relative (%) | +14.4 | +0.0 | +28.8 | +10.2 | +14.4 | -27.5 | +43.3 | +0.0 | +24.6 | +4.0 | +28.8 | |
Steps (reduced) |
38 (38) |
60 (0) |
76 (16) |
88 (28) |
98 (38) |
106 (46) |
114 (54) |
120 (0) |
126 (6) |
131 (11) |
136 (16) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.6 | -4.1 | +3.2 | -13.4 | +8.4 | +4.6 | +6.1 | +12.4 | -8.7 | +5.9 | -7.7 |
Relative (%) | -8.3 | -13.0 | +10.2 | -42.3 | +26.6 | +14.4 | +19.1 | +39.0 | -27.5 | +18.5 | -24.3 | |
Steps (reduced) |
140 (20) |
144 (24) |
148 (28) |
151 (31) |
155 (35) |
158 (38) |
161 (41) |
164 (44) |
166 (46) |
169 (49) |
171 (51) |