59edt

From Xenharmonic Wiki
Jump to navigation Jump to search
← 58edt 59edt 60edt →
Prime factorization 59 (prime)
Step size 32.2365¢ 
Octave 37\59edt (1192.75¢)
Consistency limit 5
Distinct consistency limit 5

59EDT is the equal division of the third harmonic into 59 parts of 32.2365 cents each, corresponding to 37.2249 edo. It is related to the regular temperament which tempers out |413 -347 59> in the 5-limit, which is supported by 335, 1489, 1824, 2159, 2494, 2829, and 3164 EDOs.

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 32.2 22
2 64.5 44.1 27/26, 28/27, 29/28
3 96.7 66.1 18/17, 19/18
4 128.9 88.1 14/13
5 161.2 110.2 34/31
6 193.4 132.2 19/17, 29/26
7 225.7 154.2 33/29
8 257.9 176.3 22/19
9 290.1 198.3 13/11
10 322.4 220.3
11 354.6 242.4 27/22
12 386.8 264.4 5/4
13 419.1 286.4 14/11
14 451.3 308.5
15 483.5 330.5
16 515.8 352.5 31/23
17 548 374.6
18 580.3 396.6
19 612.5 418.6 27/19
20 644.7 440.7
21 677 462.7 34/23
22 709.2 484.7
23 741.4 506.8 23/15
24 773.7 528.8 25/16
25 805.9 550.8
26 838.1 572.9
27 870.4 594.9
28 902.6 616.9
29 934.9 639
30 967.1 661
31 999.3 683.1
32 1031.6 705.1
33 1063.8 727.1
34 1096 749.2
35 1128.3 771.2 23/12
36 1160.5 793.2
37 1192.8 815.3
38 1225 837.3
39 1257.2 859.3 29/14, 31/15
40 1289.5 881.4 19/9
41 1321.7 903.4
42 1353.9 925.4
43 1386.2 947.5 29/13
44 1418.4 969.5 34/15
45 1450.6 991.5
46 1482.9 1013.6 33/14
47 1515.1 1035.6 12/5
48 1547.4 1057.6 22/9
49 1579.6 1079.7
50 1611.8 1101.7 33/13
51 1644.1 1123.7 31/12
52 1676.3 1145.8 29/11
53 1708.5 1167.8
54 1740.8 1189.8
55 1773 1211.9
56 1805.2 1233.9 17/6
57 1837.5 1255.9 26/9
58 1869.7 1278
59 1902 1300 3/1

Prime harmonics

Approximation of prime harmonics in 59edt
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -7.2 +0.0 -14.0 +16.0 +7.2 +8.1 -5.0 -4.1 -12.5 +5.2 -13.5
Relative (%) -22.5 +0.0 -43.3 +49.7 +22.3 +25.2 -15.5 -12.8 -38.9 +16.2 -41.9
Steps
(reduced)
37
(37)
59
(0)
86
(27)
105
(46)
129
(11)
138
(20)
152
(34)
158
(40)
168
(50)
181
(4)
184
(7)
Approximation of prime harmonics in 59edt
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) +2.5 -14.0 +0.3 +7.5 -7.1 +0.6 +7.4 +6.1 +2.5 -13.4 +11.0
Relative (%) +7.9 -43.4 +0.8 +23.1 -22.1 +1.9 +22.9 +19.1 +7.7 -41.5 +34.3
Steps
(reduced)
194
(17)
199
(22)
202
(25)
207
(30)
213
(36)
219
(42)
221
(44)
226
(49)
229
(52)
230
(53)
235
(58)

Related regular temperaments

149&186 temperament

5-limit

Comma: |118 12 -59>

POTE generator: ~3125/3072 = 32.2390

Map: [<1 0 2|, <0 59 12|]

EDOs: 37, 149, 186, 335, 484, 521

7-limit 149&186

Commas: 3136/3125, 49433168575/48922361856

POTE generator: ~49/48 = 32.2368

Map: [<1 0 2 2|, <0 59 12 30|]

EDOs: 37, 149, 186, 335

7-limit 149d&186

Commas: 1280000000/1275989841, 8589934592/8544921875

POTE generator: ~3125/3072 = 32.2456

Map: [<1 0 2 7|, <0 59 12 -156|]

EDOs: 149d, 186, 335d, 521, 707

7-limit 149&186d

Commas: 29360128/29296875, 1937102445/1927561216

POTE generator: ~3125/3072 = 32.2308

Map: [<1 0 2 -2|, <0 59 12 179|]

EDOs: 149, 186d, 335d, 484, 633

335&2159 temperament

5-limit

Comma: |413 -347 59>

POTE generator: ~|-119 100 -17> = 32.2373

Map: [<1 0 -7|, <0 59 347|]

EDOs: 335, 1489, 1824, 2159, 2494, 2829, 3164