59edt

From Xenharmonic Wiki
Jump to navigation Jump to search
← 58edt59edt60edt →
Prime factorization 59 (prime)
Step size 32.2365¢ 
Octave 37\59edt (1192.75¢)
Consistency limit 5
Distinct consistency limit 5

59EDT is the equal division of the third harmonic into 59 parts of 32.2365 cents each, corresponding to 37.2249 edo. It is related to the regular temperament which tempers out |413 -347 59> in the 5-limit, which is supported by 335, 1489, 1824, 2159, 2494, 2829, and 3164 EDOs.

Related regular temperaments

149&186 temperament

5-limit

Comma: |118 12 -59>

POTE generator: ~3125/3072 = 32.2390

Map: [<1 0 2|, <0 59 12|]

EDOs: 37, 149, 186, 335, 484, 521

7-limit 149&186

Commas: 3136/3125, 49433168575/48922361856

POTE generator: ~49/48 = 32.2368

Map: [<1 0 2 2|, <0 59 12 30|]

EDOs: 37, 149, 186, 335

7-limit 149d&186

Commas: 1280000000/1275989841, 8589934592/8544921875

POTE generator: ~3125/3072 = 32.2456

Map: [<1 0 2 7|, <0 59 12 -156|]

EDOs: 149d, 186, 335d, 521, 707

7-limit 149&186d

Commas: 29360128/29296875, 1937102445/1927561216

POTE generator: ~3125/3072 = 32.2308

Map: [<1 0 2 -2|, <0 59 12 179|]

EDOs: 149, 186d, 335d, 484, 633

335&2159 temperament

5-limit

Comma: |413 -347 59>

POTE generator: ~|-119 100 -17> = 32.2373

Map: [<1 0 -7|, <0 59 347|]

EDOs: 335, 1489, 1824, 2159, 2494, 2829, 3164