59edt

From Xenharmonic Wiki
Jump to navigation Jump to search
← 58edt59edt60edt →
Prime factorization 59 (prime)
Step size 32.2365¢ 
Octave 37\59edt (1192.75¢)
Consistency limit 5
Distinct consistency limit 5

59EDT is the equal division of the third harmonic into 59 parts of 32.2365 cents each, corresponding to 37.2249 edo. It is related to the regular temperament which tempers out |413 -347 59> in the 5-limit, which is supported by 335, 1489, 1824, 2159, 2494, 2829, and 3164 EDOs.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 32.237
2 64.473 27/26, 28/27, 29/28
3 96.71 18/17, 19/18
4 128.946 14/13
5 161.183 34/31
6 193.419 19/17, 29/26
7 225.656 33/29
8 257.892 22/19
9 290.129 13/11
10 322.365
11 354.602 27/22
12 386.838 5/4
13 419.075 14/11
14 451.311
15 483.548
16 515.784 31/23
17 548.021
18 580.257
19 612.494 27/19
20 644.731
21 676.967 34/23
22 709.204
23 741.44 23/15
24 773.677 25/16
25 805.913
26 838.15
27 870.386
28 902.623
29 934.859
30 967.096
31 999.332
32 1031.569
33 1063.805
34 1096.042
35 1128.278 23/12
36 1160.515
37 1192.751
38 1224.988
39 1257.224 29/14, 31/15
40 1289.461 19/9
41 1321.698
42 1353.934
43 1386.171 29/13
44 1418.407 34/15
45 1450.644
46 1482.88 33/14
47 1515.117 12/5
48 1547.353 22/9
49 1579.59
50 1611.826 33/13
51 1644.063 31/12
52 1676.299 29/11
53 1708.536
54 1740.772
55 1773.009
56 1805.245 17/6
57 1837.482 26/9
58 1869.718
59 1901.955 3/1

Prime harmonics

Approximation of prime harmonics in 59edt
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -7.2 +0.0 -14.0 +16.0 +7.2 +8.1 -5.0 -4.1 -12.5 +5.2 -13.5
Relative (%) -22.5 +0.0 -43.3 +49.7 +22.3 +25.2 -15.5 -12.8 -38.9 +16.2 -41.9
Steps
(reduced)
37
(37)
59
(0)
86
(27)
105
(46)
129
(11)
138
(20)
152
(34)
158
(40)
168
(50)
181
(4)
184
(7)
Approximation of prime harmonics in 59edt
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) +2.5 -14.0 +0.3 +7.5 -7.1 +0.6 +7.4 +6.1 +2.5 -13.4 +11.0
Relative (%) +7.9 -43.4 +0.8 +23.1 -22.1 +1.9 +22.9 +19.1 +7.7 -41.5 +34.3
Steps
(reduced)
194
(17)
199
(22)
202
(25)
207
(30)
213
(36)
219
(42)
221
(44)
226
(49)
229
(52)
230
(53)
235
(58)

Related regular temperaments

149&186 temperament

5-limit

Comma: |118 12 -59>

POTE generator: ~3125/3072 = 32.2390

Map: [<1 0 2|, <0 59 12|]

EDOs: 37, 149, 186, 335, 484, 521

7-limit 149&186

Commas: 3136/3125, 49433168575/48922361856

POTE generator: ~49/48 = 32.2368

Map: [<1 0 2 2|, <0 59 12 30|]

EDOs: 37, 149, 186, 335

7-limit 149d&186

Commas: 1280000000/1275989841, 8589934592/8544921875

POTE generator: ~3125/3072 = 32.2456

Map: [<1 0 2 7|, <0 59 12 -156|]

EDOs: 149d, 186, 335d, 521, 707

7-limit 149&186d

Commas: 29360128/29296875, 1937102445/1927561216

POTE generator: ~3125/3072 = 32.2308

Map: [<1 0 2 -2|, <0 59 12 179|]

EDOs: 149, 186d, 335d, 484, 633

335&2159 temperament

5-limit

Comma: |413 -347 59>

POTE generator: ~|-119 100 -17> = 32.2373

Map: [<1 0 -7|, <0 59 347|]

EDOs: 335, 1489, 1824, 2159, 2494, 2829, 3164