1489edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 1488edo 1489edo 1490edo →
Prime factorization 1489 (prime)
Step size 0.80591¢ 
Fifth 871\1489 (701.948¢)
Semitones (A1:m2) 141:112 (113.6¢ : 90.26¢)
Consistency limit 21
Distinct consistency limit 21

1489 equal divisions of the octave (abbreviated 1489edo or 1489ed2), also called 1489-tone equal temperament (1489tet) or 1489 equal temperament (1489et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 1489 equal parts of about 0.806 ¢ each. Each step represents a frequency ratio of 21/1489, or the 1489th root of 2.

Theory

1489edo is consistent to the 21-odd-limit. As an equal temperament, it tempers out 3025/3024 in the 11-limit; 4225/4224 and 256000/255879 in the 13-limit; 2500/2499, 5985/5984, and 57375/57344 in the 17-limit; 6175/6174 in the 19-limit. Using the 2.3.11.17.19.37 subgroup, it tempers out 3553/3552. It supports qak.

Prime harmonics

Approximation of prime harmonics in 1489edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.000 -0.007 -0.283 -0.122 -0.075 +0.036 -0.187 -0.132 +0.335 +0.376 +0.163
Relative (%) +0.0 -0.9 -35.1 -15.1 -9.4 +4.5 -23.2 -16.4 +41.6 +46.6 +20.2
Steps
(reduced)
1489
(0)
2360
(871)
3457
(479)
4180
(1202)
5151
(684)
5510
(1043)
6086
(130)
6325
(369)
6736
(780)
7234
(1278)
7377
(1421)

Subsets and supersets

1489edo is the 237th prime edo.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [-2360 1489 [1489 2360]] 0.0023 0.0023 0.29
2.3.5 [54 -37 2, [-73 -14 41 [1489 2360 3457]] 0.0422 0.0564 7.00
2.3.5.7 420175/419904, 703125/702464, [49 -27 7 -8 [1489 2360 3457 4180]] 0.0425 0.0488 6.06
2.3.5.7.11 3025/3024, 759375/758912, 420175/419904, 32768000000/32750405919 [1489 2360 3457 4180 5151]] 0.0384 0.0444 5.51
2.3.5.7.11.13 3025/3024, 4225/4224, 91125/91091, 256000/255879, 420175/419904 [1489 2360 3457 4180 5151 5510]] 0.0303 0.0444 5.51
2.3.5.7.11.13.17 3025/3024, 2500/2499, 4225/4224, 56595/56576, 57375/57344, 256000/255879 [1489 2360 3457 4180 5151 5510 6086]] 0.0325 0.0414 5.14