62edt
Jump to navigation
Jump to search
Prime factorization
2 × 31
Step size
30.6767¢
Octave
39\62edt (1196.39¢)
Consistency limit
7
Distinct consistency limit
7
← 61edt | 62edt | 63edt → |
Division of the third harmonic into 62 equal parts (62EDT) is related to 39 edo, but with the 3/1 rather than the 2/1 being just. The octave is about 3.6090 cents compressed and the step size is about 30.6767 cents. It is consistent to the 7-integer-limit, but not to the 8-integer-limit. In comparison, 39edo is only consistent up to the 6-integer-limit.
Intervals
degree | cents value | hekts | corresponding JI intervals |
comments |
---|---|---|---|---|
0 | exact 1/1 | |||
1 | 30.6767 | 20.9677 | 57/56, 56/55 | |
2 | 61.3534 | 41.9355 | 57/55 | |
3 | 92.0301 | 62.9032 | 96/91 | |
4 | 122.7068 | 83.871 | 161/150, 189/176 | |
5 | 153.3835 | 104.8387 | 12/11 | |
6 | 184.0602 | 125.80645 | 10/9 | |
7 | 214.7369 | 146.7742 | 17/15 | |
8 | 245.4135 | 167.7412 | 121/105 | |
9 | 276.0902 | 188.7097 | 20/17 | |
10 | 306.7669 | 209.6774 | 6/5 | |
11 | 337.4436 | 230.6452 | 243/200 | |
12 | 368.1203 | 251.6129 | 16/13 | |
13 | 398.797 | 272.58065 | 34/27 | |
14 | 429.4737 | 293.5484 | 9/7 | |
15 | 460.1504 | 314.5161 | 21/16 | |
16 | 490.8271 | 335.4839 | 4/3 | |
17 | 521.5038 | 356.4516 | 77/57 | |
18 | 552.1805 | 377.49135 | 11/8 | |
19 | 582.8572 | 398.3871 | 7/5 | |
20 | 613.5339 | 419.3548 | 57/40 | |
21 | 644.2106 | 440.3226 | 16/11 | |
22 | 674.8873 | 461.2903 | 96/65 | |
23 | 705.564 | 482.2851 | 3/2 | |
24 | 736.2406 | 503.2258 | 153/100 | |
25 | 766.9173 | 524.19355 | 81/52 | |
26 | 797.594 | 545.1613 | 27/17 | |
27 | 828.2707 | 566.129 | 13/8 | |
28 | 858.9474 | 587.0968 | 69/42 | |
29 | 889.6241 | 608.0645 | 117/70 | pseudo-5/3 |
30 | 920.3008 | 629.0323 | 17/10 | |
31 | 950.9775 | 650 | 26/15 | |
32 | 981.6542 | 670.9677 | 30/17 | |
33 | 1012.3309 | 691.9355 | 70/39 | pseudo-9/5 |
34 | 1043.0076 | 712.9032 | 42/23 | |
35 | 1073.6843 | 733.871 | 119/64 | |
36 | 1104.361 | 754.8387 | 17/9 | |
37 | 1135.0377 | 775.80645 | 52/27 | |
38 | 1165.7144 | 796.7742 | 100/51 | |
39 | 1196.391 | 817.7419 | 2/1 | pseudo-octave |
40 | 1227.0677 | 838.7097 | 65/32 | |
41 | 1257.7444 | 859.6774 | 114/55 | |
42 | 1288.4211 | 880.6452 | 40/19 | |
43 | 1319.0978 | 901.6129 | 15/7 | |
44 | 1349.7745 | 922.58065 | 24/11 | |
45 | 1380.4512 | 943.5484 | 20/9 | |
46 | 1411.1279 | 964.5161 | 9/4 | |
47 | 1441.8046 | 985.4839 | 23/10 | |
48 | 1472.4813 | 1006.4516 | 7/3 | |
49 | 1503.158 | 1027.4194 | 81/34 | |
50 | 1533.8347 | 1048.3871 | 39/16 | |
51 | 1564.5114 | 1069.3548 | 200/81 | |
52 | 1595.1881 | 1090.3226 | 98/39 | |
53 | 1625.8648 | 1111.2903 | 51/20 | |
54 | 1656.5415 | 1132.2581 | 192/65 | |
55 | 1687.2181 | 1153.2258 | 8/3 | |
56 | 1717.8948 | 1174.19355 | 27/10 | |
57 | 1748.5715 | 1195.1613 | 11/4 | |
58 | 1779.2482 | 1216.129 | 176/63 | |
59 | 1809.9249 | 1237.0968 | 91/32 | |
60 | 1840.6016 | 1258.0645 | 55/19 | |
61 | 1871.2783 | 1279.0323 | 56/19 | |
62 | 1901.955 | 1300 | exact 3/1 | just perfect fifth plus an octave |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -3.6 | +0.0 | -7.2 | +5.3 | -3.6 | +5.6 | -10.8 | +0.0 | +1.7 | -10.0 | -7.2 |
Relative (%) | -11.8 | +0.0 | -23.5 | +17.2 | -11.8 | +18.3 | -35.3 | +0.0 | +5.4 | -32.5 | -23.5 | |
Steps (reduced) |
39 (39) |
62 (0) |
78 (16) |
91 (29) |
101 (39) |
110 (48) |
117 (55) |
124 (0) |
130 (6) |
135 (11) |
140 (16) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +7.6 | +2.0 | +5.3 | -14.4 | +3.3 | -3.6 | -5.2 | -2.0 | +5.6 | -13.6 | +1.5 |
Relative (%) | +24.8 | +6.5 | +17.2 | -47.1 | +10.8 | -11.8 | -16.9 | -6.4 | +18.3 | -44.2 | +4.9 | |
Steps (reduced) |
145 (21) |
149 (25) |
153 (29) |
156 (32) |
160 (36) |
163 (39) |
166 (42) |
169 (45) |
172 (48) |
174 (50) |
177 (53) |