63edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 62edt 63edt 64edt →
Prime factorization 32 × 7
Step size 30.1898¢ 
Octave 40\63edt (1207.59¢)
Consistency limit 2
Distinct consistency limit 2

63 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 63edt or 63ed3), is a nonoctave tuning system that divides the interval of 3/1 into 63 equal parts of about 30.2⁠ ⁠¢ each. Each step represents a frequency ratio of 31/63, or the 63rd root of 3.

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 30.2 20.6
2 60.4 41.3 30/29, 31/30
3 90.6 61.9 19/18, 20/19
4 120.8 82.5 29/27
5 150.9 103.2 12/11
6 181.1 123.8 10/9
7 211.3 144.4 26/23, 35/31
8 241.5 165.1 23/20, 31/27
9 271.7 185.7 34/29
10 301.9 206.3 31/26
11 332.1 227 23/19
12 362.3 247.6
13 392.5 268.3
14 422.7 288.9 23/18
15 452.8 309.5 13/10, 35/27
16 483 330.2
17 513.2 350.8 31/23, 35/26
18 543.4 371.4 26/19
19 573.6 392.1
20 603.8 412.7
21 634 433.3 13/9
22 664.2 454 25/17
23 694.4 474.6
24 724.6 495.2 35/23
25 754.7 515.9 31/20
26 784.9 536.5 11/7
27 815.1 557.1
28 845.3 577.8 31/19
29 875.5 598.4
30 905.7 619
31 935.9 639.7 12/7
32 966.1 660.3 7/4
33 996.3 681
34 1026.5 701.6
35 1056.6 722.2 35/19
36 1086.8 742.9
37 1117 763.5 21/11
38 1147.2 784.1 35/18
39 1177.4 804.8
40 1207.6 825.4
41 1237.8 846
42 1268 866.7 27/13
43 1298.2 887.3
44 1328.3 907.9
45 1358.5 928.6
46 1388.7 949.2 29/13
47 1418.9 969.8 34/15
48 1449.1 990.5 30/13
49 1479.3 1011.1
50 1509.5 1031.7
51 1539.7 1052.4
52 1569.9 1073
53 1600.1 1093.7
54 1630.2 1114.3
55 1660.4 1134.9 34/13
56 1690.6 1155.6
57 1720.8 1176.2 27/10
58 1751 1196.8 11/4
59 1781.2 1217.5
60 1811.4 1238.1
61 1841.6 1258.7 29/10
62 1871.8 1279.4
63 1902 1300 3/1

Harmonics

Approximation of harmonics in 63edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +7.6 +0.0 -15.0 -8.9 +7.6 +12.4 -7.4 +0.0 -1.3 +14.9 -15.0
Relative (%) +25.1 +0.0 -49.7 -29.3 +25.1 +41.2 -24.6 +0.0 -4.2 +49.3 -49.7
Steps
(reduced)
40
(40)
63
(0)
79
(16)
92
(29)
103
(40)
112
(49)
119
(56)
126
(0)
132
(6)
138
(12)
142
(16)
Approximation of harmonics in 63edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -2.6 -10.2 -8.9 +0.2 -14.2 +7.6 +4.6 +6.3 +12.4 -7.7 +5.9
Relative (%) -8.7 -33.7 -29.3 +0.6 -47.1 +25.1 +15.1 +21.0 +41.2 -25.6 +19.5
Steps
(reduced)
147
(21)
151
(25)
155
(29)
159
(33)
162
(36)
166
(40)
169
(43)
172
(46)
175
(49)
177
(51)
180
(54)