18ed5/3
Jump to navigation
Jump to search
Prime factorization
2 × 32
Step size
49.131¢
Octave
24\18ed5/3 (1179.14¢) (→4\3ed5/3)
Twelfth
39\18ed5/3 (1916.11¢) (→13\6ed5/3)
Consistency limit
2
Distinct consistency limit
2
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 17ed5/3 | 18ed5/3 | 19ed5/3 → |
18 equal divisions of 5/3 (abbreviated 18ed5/3) is a nonoctave tuning system that divides the interval of 5/3 into 18 equal parts of about 49.1 ¢ each. Each step represents a frequency ratio of (5/3)1/18, or the 18th root of 5/3.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 49.1 | |
2 | 98.3 | 18/17, 19/18 |
3 | 147.4 | 11/10, 12/11, 13/12 |
4 | 196.5 | 19/17 |
5 | 245.7 | 23/20 |
6 | 294.8 | 13/11 |
7 | 343.9 | 17/14 |
8 | 393 | 19/15 |
9 | 442.2 | 9/7, 13/10 |
10 | 491.3 | |
11 | 540.4 | 19/14 |
12 | 589.6 | 7/5 |
13 | 638.7 | |
14 | 687.8 | |
15 | 737 | 20/13 |
16 | 786.1 | |
17 | 835.2 | |
18 | 884.4 | 5/3 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -20.9 | +14.2 | +7.4 | +14.2 | -6.7 | +21.2 | -13.4 | -20.8 | -6.7 | -24.3 | +21.6 |
Relative (%) | -42.4 | +28.8 | +15.1 | +28.8 | -13.6 | +43.2 | -27.3 | -42.4 | -13.6 | -49.5 | +43.9 | |
Steps (reduced) |
24 (6) |
39 (3) |
49 (13) |
57 (3) |
63 (9) |
69 (15) |
73 (1) |
77 (5) |
81 (9) |
84 (12) |
88 (16) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -18.7 | +0.4 | -20.8 | +14.8 | +8.1 | +7.5 | +12.1 | +21.6 | -13.8 | +4.0 | -23.9 |
Relative (%) | -38.1 | +0.7 | -42.4 | +30.2 | +16.6 | +15.2 | +24.7 | +43.9 | -28.0 | +8.1 | -48.6 | |
Steps (reduced) |
90 (0) |
93 (3) |
95 (5) |
98 (8) |
100 (10) |
102 (12) |
104 (14) |
106 (16) |
107 (17) |
109 (1) |
110 (2) |