10ed5/3

From Xenharmonic Wiki
Jump to navigation Jump to search
← 9ed5/3 10ed5/3 11ed5/3 →
Prime factorization 2 × 5
Step size 88.4359¢ 
Octave 14\10ed5/3 (1238.1¢) (→7\5ed5/3)
Twelfth 22\10ed5/3 (1945.59¢) (→11\5ed5/3)
Consistency limit 3
Distinct consistency limit 2

10 equal divisions of 5/3 (abbreviated 10ed5/3) is a nonoctave tuning system that divides the interval of 5/3 into 10 equal parts of about 88.4 ¢ each. Each step represents a frequency ratio of (5/3)1/10, or the 10th root of 5/3.

Intervals

Step Interval (¢) JI approximated Simplified ratios
1 88.44 81/77
2 176.87 10/9, 11/10
3 265.31 7/6, 29/25
4 353.74 11/9, 29/24, 36/29
5 442.18 9/7
6 530.62 15/11, 40/29
7 619.05 10/7, 63/44
8 707.49 6/4, 44/29 3/2
9 795.92 16/10, 11/7, 46/29 8/5
10 884.36 5/3, 42/25
11 972.80 7/4, 44/25
12 1061.23 11/6, 54/29
13 1149.67 29/15
14 1238.10 66/32 33/16
15 1326.54 15/7
16 1414.97 9/4, 16/7, 25/11
17 1503.41 24/10 12/5
18 1591.85 10/4, 63/25 5/2
19 1680.28 16/6, 29/11, 66/25 8/3
20 1768.72 11/4, 28/10 14/5

The subgroup interpretation used is 5/3.4.6.7.9.10.11.29. Other interpretations are possible. Don't forget that fractions can multiply, e.g. 9*5/3=15, 15*5/3=25.

Harmonics

Approximation of harmonics in 10ed5/3
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +38.1 +43.6 -12.2 +43.6 -6.7 -8.3 +25.9 -1.2 -6.7 +5.2 +31.4
Relative (%) +43.1 +49.3 -13.8 +49.3 -7.6 -9.3 +29.3 -1.3 -7.6 +5.8 +35.5
Steps
(reduced)
14
(4)
22
(2)
27
(7)
32
(2)
35
(5)
38
(8)
41
(1)
43
(3)
45
(5)
47
(7)
49
(9)
Approximation of harmonics in 10ed5/3
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -18.7 +29.8 -1.2 -24.5 -41.0 +36.9 +31.8 +31.4 +35.4 +43.3 -33.7
Relative (%) -21.2 +33.7 -1.3 -27.7 -46.3 +41.8 +35.9 +35.5 +40.0 +48.9 -38.1
Steps
(reduced)
50
(0)
52
(2)
53
(3)
54
(4)
55
(5)
57
(7)
58
(8)
59
(9)
60
(0)
61
(1)
61
(1)


Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.