9ed5/3
Jump to navigation
Jump to search
Prime factorization
32
Step size
98.2621¢
Octave
12\9ed5/3 (1179.14¢) (→4\3ed5/3)
Twelfth
19\9ed5/3 (1866.98¢)
Consistency limit
4
Distinct consistency limit
3
← 8ed5/3 | 9ed5/3 | 10ed5/3 → |
9ed5/3 is the equal division of the just major sixth into nine parts of 98.2621 cents each, corresponding to 12.2122edo. It is very closely related to the passion temperament.
Intervals
Degrees | 15ed(11φ+5\9φ+4) | 9ed(5/3) |
---|---|---|
1 | 98.25665 | 98.2621 |
2 | 196.5133 | 196.5241 |
3 | 294.7699 | 294.7862 |
4 | 393.0266 | 393.0483 |
5 | 491.2832 | 491.3104 |
6 | 589.5399 | 589.5725 |
7 | 687.7965 | 687.83455 |
8 | 786.0532 | 786.0966 |
9 | 884.3098 | 884.3587 |
10 | 982.56645 | 982.6207 |
11 | 1080.8231 | 1080.8828 |
12 | 1179.07976 | 1179.14495 |
13 | 1277.3364 | 1277.407 |
14 | 1375.593 | 1375.6691 |
15 | 1473.8497 | 1473.9312 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -20.9 | -35.0 | -41.7 | -35.0 | +42.4 | -27.9 | +35.7 | +28.3 | +42.4 | -24.3 | +21.6 |
Relative (%) | -21.2 | -35.6 | -42.4 | -35.6 | +43.2 | -28.4 | +36.3 | +28.8 | +43.2 | -24.7 | +22.0 | |
Steps (reduced) |
12 (3) |
19 (1) |
24 (6) |
28 (1) |
32 (5) |
34 (7) |
37 (1) |
39 (3) |
41 (5) |
42 (6) |
44 (8) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -18.7 | -48.8 | +28.3 | +14.8 | +8.1 | +7.5 | +12.1 | +21.6 | +35.4 | -45.2 | -23.9 |
Relative (%) | -19.1 | -49.6 | +28.8 | +15.1 | +8.3 | +7.6 | +12.3 | +22.0 | +36.0 | -46.0 | -24.3 | |
Steps (reduced) |
45 (0) |
46 (1) |
48 (3) |
49 (4) |
50 (5) |
51 (6) |
52 (7) |
53 (8) |
54 (0) |
54 (0) |
55 (1) |