29edt

From Xenharmonic Wiki
Jump to navigation Jump to search

29EDT is the equal division of the third harmonic into 29 parts of 65.5847 cents each, corresponding to 18.2970 edo. It is related to the luminal temperament.

steps cents hekts corresponding
JI intervals
comments
0 1/1
1 65.5847 44.8276 27/26
2 131.1693 89.6552 14/13, 27/25, 55/51
3 196.7540 134.4828 9/8, 28/25 pseudo-10/9
4 262.3386 179.3103 7/6
5 327.9233 224.1379 pseudo-6/5
6 393.5079 268.9655 64/51 pseudo-5/4
7 459.0926 313.7931 13/10
8 524.6772 358.6206 65/48, 27/20
9 590.2619 403.4483 45/32
10 655.8466 448.2759 16/11
11 721.4312 493.1034 pseudo-3/2
12 787.0159 537.9310 63/40, 52/33 pseudo-8/5
13 852.6005 582.7586 18/11 flat pseudo-5/3
14 918.1852 627.5862 17/10 sharp pseudo-5/3
15 983.7698 672.4138 30/17 flat pseudo-9/5
16 1049.3545 717.2414 11/6 sharp pseudo-9/5
17 1114.9391 772.0690 99/52, 40/21 pseudo-15/8
18 1180.5238 806.8966 pseudooctave
19 1246.1084 851.7241 33/16
20 1311.6931 896.5517 32/15
21 1377.2778 941.3794 144/65, 20/9
22 1442.8624 986.2069 30/13 pseudo-7/3 (7/6 plus pseudooctave)
23 1508.4471 1031.0345 153/64 pseudo-12/5
24 1574.0317 1075.8621 pseudo-5/2
25 1639.6164 1120.6897 18/7
26 1705.2010 1165.5172 8/3, 75/28 pseudo-27/10
27 1770.7857 1210.3448 39/14, 25/9, 153/55
28 1836.3703 1255.1724 26/9
29 1901.9550 1300.0000 3/1 just perfect fifth plus an octave