29edt
Jump to navigation
Jump to search
Prime factorization
29 (prime)
Step size
65.5847¢
Octave
18\29edt (1180.52¢)
Fifth
11\29edt (721.431¢)
Semitones (A1:m2)
5:-1 (327.9¢ : -65.58¢)
Consistency limit
2
Distinct consistency limit
2
← 28edt | 29edt | 30edt → |
29EDT is the equal division of the third harmonic into 29 parts of 65.5847 cents each, corresponding to 18.2970 edo. It is related to the luminal temperament.
steps | cents | hekts | corresponding JI intervals |
comments |
---|---|---|---|---|
0 | 1/1 | |||
1 | 65.5847 | 44.8276 | 27/26 | |
2 | 131.1693 | 89.6552 | 14/13, 27/25, 55/51 | |
3 | 196.7540 | 134.4828 | 9/8, 28/25 | pseudo-10/9 |
4 | 262.3386 | 179.3103 | 7/6 | |
5 | 327.9233 | 224.1379 | pseudo-6/5 | |
6 | 393.5079 | 268.9655 | 64/51 | pseudo-5/4 |
7 | 459.0926 | 313.7931 | 13/10 | |
8 | 524.6772 | 358.6206 | 65/48, 27/20 | |
9 | 590.2619 | 403.4483 | 45/32 | |
10 | 655.8466 | 448.2759 | 16/11 | |
11 | 721.4312 | 493.1034 | pseudo-3/2 | |
12 | 787.0159 | 537.9310 | 63/40, 52/33 | pseudo-8/5 |
13 | 852.6005 | 582.7586 | 18/11 | flat pseudo-5/3 |
14 | 918.1852 | 627.5862 | 17/10 | sharp pseudo-5/3 |
15 | 983.7698 | 672.4138 | 30/17 | flat pseudo-9/5 |
16 | 1049.3545 | 717.2414 | 11/6 | sharp pseudo-9/5 |
17 | 1114.9391 | 772.0690 | 99/52, 40/21 | pseudo-15/8 |
18 | 1180.5238 | 806.8966 | pseudooctave | |
19 | 1246.1084 | 851.7241 | 33/16 | |
20 | 1311.6931 | 896.5517 | 32/15 | |
21 | 1377.2778 | 941.3794 | 144/65, 20/9 | |
22 | 1442.8624 | 986.2069 | 30/13 | pseudo-7/3 (7/6 plus pseudooctave) |
23 | 1508.4471 | 1031.0345 | 153/64 | pseudo-12/5 |
24 | 1574.0317 | 1075.8621 | pseudo-5/2 | |
25 | 1639.6164 | 1120.6897 | 18/7 | |
26 | 1705.2010 | 1165.5172 | 8/3, 75/28 | pseudo-27/10 |
27 | 1770.7857 | 1210.3448 | 39/14, 25/9, 153/55 | |
28 | 1836.3703 | 1255.1724 | 26/9 | |
29 | 1901.9550 | 1300.0000 | 3/1 | just perfect fifth plus an octave |