43edf

From Xenharmonic Wiki
Jump to navigation Jump to search
← 42edf 43edf 44edf →
Prime factorization 43 (prime)
Step size 16.3245¢ 
Octave 74\43edf (1208.02¢)
Twelfth 117\43edf (1909.97¢)
Consistency limit 2
Distinct consistency limit 2

43EDF is the equal division of the just perfect fifth into 43 parts of 16.3245 cents each, corresponding to 73.5090 edo (similar to every second step of 147edo). It is related to the microtemperament which tempers out |-135 135 -86 43> (0.45970 cents) in the 7-limit, which is supported by 441, 4190, 4631, 5072, 7204, 11394, 11835, 12276, and 16466 EDOs.

Related temperament

7-limit 441&4631&12276

Comma: |-135 135 -86 43>

POTE generators: ~5/4 = 386.3143, ~|-22 22 -14 7> = 16.3245

Mapping: [<1 1 0 0|, <0 43 0 -135|, <0 0 1 2|]

EDOs: 441, 3749, 4190, 4631, 5072, 5513, 6763, 7204, 11394, 11835, 12276, 12717, 16466, 23229, 24111

11-limit 441&4631&12276

Commas: |-31 29 -11 5 -1>, |20 -10 -31 18 5>

POTE generators: ~5/4 = 386.3178, ~|-22 22 -14 7> = 16.3245

Mapping: [<1 1 0 0 -2|, <0 43 0 -135 572|, <0 0 1 2 -1|]

EDOs: 441, 3455, 3749, 3896, 4190, 4631, 7645, 8086, 8821, 11835, 12276, 16466, 16907, 24111, 28742

13-limit 441&4631&12276

Commas: 33792000/33787663, 703096443/703040000, 33319272448/33317578125

POTE generators: ~5/4 = 386.3240, ~|-22 22 -14 7> = 16.3246

Mapping: [<1 1 0 0 -2 2|, <0 43 0 -135 572 125|, <0 0 1 2 -1 0|]

EDOs: 441, 3455, 3749, 3896, 4190, 4631, 7645, 8086, 8821, 12276