43edf
← 42edf | 43edf | 44edf → |
43 equal divisions of the perfect fifth (abbreviated 43edf or 43ed3/2) is a nonoctave tuning system that divides the interval of 3/2 into 43 equal parts of about 16.3 ¢ each. Each step represents a frequency ratio of (3/2)1/43, or the 43rd root of 3/2.
Theory
43edf corresponds to 73.5090 edo, similar to every second step of 147edo. It is related to the microtemperament which tempers out [-135 135 -86 43⟩ (0.45970 cents) in the 7-limit, which is supported by 441-, 4190-, 4631-, 5072-, 7204-, 11394-, 11835-, 12276-, and 16466edo.
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +8.02 | +8.02 | -0.29 | +5.18 | -0.29 | -5.97 | +7.72 | -0.29 | -3.13 | -4.89 | +7.72 |
Relative (%) | +49.1 | +49.1 | -1.8 | +31.7 | -1.8 | -36.6 | +47.3 | -1.8 | -19.2 | -29.9 | +47.3 | |
Steps (reduced) |
74 (31) |
117 (31) |
147 (18) |
171 (42) |
190 (18) |
206 (34) |
221 (6) |
233 (18) |
244 (29) |
254 (39) |
264 (6) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.25 | +2.04 | -3.13 | -0.59 | -7.59 | +7.72 | -4.26 | +4.89 | +2.04 | +3.13 | +7.80 |
Relative (%) | -1.6 | +12.5 | -19.2 | -3.6 | -46.5 | +47.3 | -26.1 | +29.9 | +12.5 | +19.2 | +47.8 | |
Steps (reduced) |
272 (14) |
280 (22) |
287 (29) |
294 (36) |
300 (42) |
307 (6) |
312 (11) |
318 (17) |
323 (22) |
328 (27) |
333 (32) |
Related temperament
7-limit 441&4631&12276
Comma: |-135 135 -86 43>
POTE generators: ~5/4 = 386.3143, ~|-22 22 -14 7> = 16.3245
Mapping: [<1 1 0 0|, <0 43 0 -135|, <0 0 1 2|]
EDOs: 441, 3749, 4190, 4631, 5072, 5513, 6763, 7204, 11394, 11835, 12276, 12717, 16466, 23229, 24111
11-limit 441&4631&12276
Commas: |-31 29 -11 5 -1>, |20 -10 -31 18 5>
POTE generators: ~5/4 = 386.3178, ~|-22 22 -14 7> = 16.3245
Mapping: [<1 1 0 0 -2|, <0 43 0 -135 572|, <0 0 1 2 -1|]
EDOs: 441, 3455, 3749, 3896, 4190, 4631, 7645, 8086, 8821, 11835, 12276, 16466, 16907, 24111, 28742
13-limit 441&4631&12276
Commas: 33792000/33787663, 703096443/703040000, 33319272448/33317578125
POTE generators: ~5/4 = 386.3240, ~|-22 22 -14 7> = 16.3246
Mapping: [<1 1 0 0 -2 2|, <0 43 0 -135 572 125|, <0 0 1 2 -1 0|]
EDOs: 441, 3455, 3749, 3896, 4190, 4631, 7645, 8086, 8821, 12276