44edf

From Xenharmonic Wiki
Jump to navigation Jump to search
← 43edf 44edf 45edf →
Prime factorization 22 × 11
Step size 15.9535¢ 
Octave 75\44edf (1196.51¢)
Twelfth 119\44edf (1898.47¢)
Consistency limit 4
Distinct consistency limit 4

44 equal divisions of the perfect fifth (abbreviated 44edf or 44ed3/2) is a nonoctave tuning system that divides the interval of 3/2 into 44 equal parts of about 16⁠ ⁠¢ each. Each step represents a frequency ratio of (3/2)1/44, or the 44th root of 3/2.

Theory

44edf corresponds to 75.2185edo. It is related to the regular temperament which tempers out [183 -51 -44 in the 5-limit, which is supported by 301-, 376-, 677-, 1053-, 1429-, 1730-, 2407-, and 2783edo.

Harmonics

Approximation of prime harmonics in 44edf
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -3.49 -3.49 +5.55 -2.63 -3.40 -5.45 -7.22 +7.61 -4.08 -6.54 +5.63
Relative (%) -21.8 -21.8 +34.8 -16.5 -21.3 -34.2 -45.3 +47.7 -25.6 -41.0 +35.3
Steps
(reduced)
75
(31)
119
(31)
175
(43)
211
(35)
260
(40)
278
(14)
307
(43)
320
(12)
340
(32)
365
(13)
373
(21)

Related regular temperaments

5-limit 677&1053

Comma: |183 -51 -44>

POTE generator: ~|-104 29 25> = 15.9540

Mapping: [<1 1 3|, <0 44 -51|]

EDOs: 75, 301, 376, 677, 978, 1053, 1429, 1730, 2407, 2783, 3836

2.3.5.11 677&1053

Commas: 184549376/184528125, 38084983750656/38060880859375

POTE generator: ~|-104 29 25> = 15.9535

Mapping: [<1 1 3 1|, <0 44 -51 185|]

EDOs: 301, 376, 677, 978, 1053, 1429, 1730, 2407, 2783, 3084

13-limit 677&1053

Commas: 6656/6655, 184549376/184528125, 1162261467/1161875000

POTE generator: ~|-104 29 25> = 15.9540

Mapping: [<1 1 3 1 -3|, <0 44 -51 185 504|]

EDOs: 677, 1053, 1730, 2407, 3084, 4137

Intervals

degree cents value corresponding
JI intervals
comments
0 exact 1/1
1 15.9535
2 31.907
3 47.8606
4 63.8141
5 79.7676 22/21
6 95.7211 37/35
7 111.6747 16/15
8 127.6282 14/13
9 143.5817 25/23
10 159.5352 34/31
11 175.48875 31/28
12 191.4423 19/17
13 207.3958 62/55
14 223.3493 33/29
15 239.3028 31/27
16 255.2564 51/44
17 271.2099 62/53
18 287.1634
19 303.1169 81/68
20 319.0705 6/5
21 335.024
22 350.9775 60/49, 49/40
23 366.931
24 382.8845 5/4
25 398.8381 34/27
26 414.7916 14/11
27 430.7451 9/7
28 446.6986 22/17
29 462.6522
30 478.6057
31 494.5592 4/3
32 510.5127
33 526.46625 42/31, 27/20
34 542.4198
35 558.3733
36 574.3268
37 590.2803 45/32
38 606.2339
39 622.1874 63/44
40 638.1409 81/56
41 654.0944
42 670.048
43 686.0015 40/27
44 701.955 exact 3/2 just perfect fifth
45 717.8985 243/160
46 733.862
47 749.8156
48 765.7691 14/9
49 781.7226 11/7
50 797.6761
51 813.6297 8/5
52 829.5832
53 845.5367
54 861.4902
55 877.44375 5/3
56 893.3973
57 909.3508 27/16
58 925.3043
59 941.2578
60 957.2184 153/88
61 973.1649 7/4
62 989.1184 99/56
63 1005.0719 243/136
64 1021.0255 9/5
65 1036.979
66 1052.9325
67 1068.886 13/7
68 1084.89355 15/8
69 1100.7931
70 1116.7466
71 1132.7001
72 1148.6536
73 1164.9072
74 1180.5607 160/81
75 1196.5142 2/1
76 1212.4677
77 1228.42125
78 1244.3748
79 1260.3283
80 1276.2818
81 1292.2353
82 1308.1889
83 1324.1424
84 1340.0959
85 1356.0494
86 1372.003
87 1387.9565 20/9
88 1403.91 exact 9/4