44edf

From Xenharmonic Wiki
Jump to navigation Jump to search
← 43edf 44edf 45edf →
Prime factorization 22 × 11
Step size 15.9535¢ 
Octave 75\44edf (1196.51¢)
Twelfth 119\44edf (1898.47¢)
Consistency limit 4
Distinct consistency limit 4

44EDF is the equal division of the just perfect fifth into 44 parts of 15.9535 cents each, corresponding to 75.2185 edo.

It is related to the regular temperament which tempers out |183 -51 -44> in the 5-limit, which is supported by 301, 376, 677, 1053, 1429, 1730, 2407, and 2783 EDOs.

Related regular temperaments

5-limit 677&1053

Comma: |183 -51 -44>

POTE generator: ~|-104 29 25> = 15.9540

Mapping: [<1 1 3|, <0 44 -51|]

EDOs: 75, 301, 376, 677, 978, 1053, 1429, 1730, 2407, 2783, 3836

2.3.5.11 677&1053

Commas: 184549376/184528125, 38084983750656/38060880859375

POTE generator: ~|-104 29 25> = 15.9535

Mapping: [<1 1 3 1|, <0 44 -51 185|]

EDOs: 301, 376, 677, 978, 1053, 1429, 1730, 2407, 2783, 3084

13-limit 677&1053

Commas: 6656/6655, 184549376/184528125, 1162261467/1161875000

POTE generator: ~|-104 29 25> = 15.9540

Mapping: [<1 1 3 1 -3|, <0 44 -51 185 504|]

EDOs: 677, 1053, 1730, 2407, 3084, 4137

Harmonics

Approximation of prime harmonics in 44edf
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -3.49 -3.49 +5.55 -2.63 -3.40 -5.45 -7.22 +7.61 -4.08 -6.54 +5.63
Relative (%) -21.8 -21.8 +34.8 -16.5 -21.3 -34.2 -45.3 +47.7 -25.6 -41.0 +35.3
Steps
(reduced)
75
(31)
119
(31)
175
(43)
211
(35)
260
(40)
278
(14)
307
(43)
320
(12)
340
(32)
365
(13)
373
(21)

Intervals

degree cents value corresponding
JI intervals
comments
0 exact 1/1
1 15.9535
2 31.907
3 47.8606
4 63.8141
5 79.7676 22/21
6 95.7211 37/35
7 111.6747 16/15
8 127.6282 14/13
9 143.5817 25/23
10 159.5352 34/31
11 175.48875 31/28
12 191.4423 19/17
13 207.3958 62/55
14 223.3493 33/29
15 239.3028 31/27
16 255.2564 51/44
17 271.2099 62/53
18 287.1634
19 303.1169 81/68
20 319.0705 6/5
21 335.024
22 350.9775 60/49, 49/40
23 366.931
24 382.8845 5/4
25 398.8381 34/27
26 414.7916 14/11
27 430.7451 9/7
28 446.6986 22/17
29 462.6522
30 478.6057
31 494.5592 4/3
32 510.5127
33 526.46625 42/31, 27/20
34 542.4198
35 558.3733
36 574.3268
37 590.2803 45/32
38 606.2339
39 622.1874 63/44
40 638.1409 81/56
41 654.0944
42 670.048
43 686.0015 40/27
44 701.955 exact 3/2 just perfect fifth
45 717.8985 243/160
46 733.862
47 749.8156
48 765.7691 14/9
49 781.7226 11/7
50 797.6761
51 813.6297 8/5
52 829.5832
53 845.5367
54 861.4902
55 877.44375 5/3
56 893.3973
57 909.3508 27/16
58 925.3043
59 941.2578
60 957.2184 153/88
61 973.1649 7/4
62 989.1184 99/56
63 1005.0719 243/136
64 1021.0255 9/5
65 1036.979
66 1052.9325
67 1068.886 13/7
68 1084.89355 15/8
69 1100.7931
70 1116.7466
71 1132.7001
72 1148.6536
73 1164.9072
74 1180.5607 160/81
75 1196.5142 2/1
76 1212.4677
77 1228.42125
78 1244.3748
79 1260.3283
80 1276.2818
81 1292.2353
82 1308.1889
83 1324.1424
84 1340.0959
85 1356.0494
86 1372.003
87 1387.9565 20/9
88 1403.91 exact 9/4