42edf
Jump to navigation
Jump to search
Prime factorization
2 × 3 × 7
Step size
16.7132¢
Octave
72\42edf (1203.35¢) (→12\7edf)
Twelfth
114\42edf (1905.31¢) (→19\7edf)
Consistency limit
7
Distinct consistency limit
7
← 41edf | 42edf | 43edf → |
Division of the just perfect fifth into 42 equal parts (42EDF) is related to 72edo, but with the 3/2 rather than the 2/1 being just. The octave is stretched by about 3.3514 cents and the step size is about 16.7132 cents (corresponding to 71.7995 edo, practically identical to every fifth step of 359edo).
Unlike 72edo, it is only consistent up to the 7-integer-limit, with discrepancy for the 8th harmonic (three octaves).
Lookalikes: 72edo, 114edt, 186ed6
Harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.35 | +3.35 | +4.79 | +7.24 | -6.44 | +5.19 | -7.98 | +0.02 | +3.52 | +3.33 | +4.87 |
Relative (%) | +20.1 | +20.1 | +28.7 | +43.3 | -38.5 | +31.0 | -47.8 | +0.1 | +21.1 | +20.0 | +29.1 | |
Steps (reduced) |
72 (30) |
114 (30) |
167 (41) |
202 (34) |
248 (38) |
266 (14) |
293 (41) |
305 (11) |
325 (31) |
349 (13) |
356 (20) |
Harmonic | 37 | 41 | 43 | 47 | 53 | 59 | 61 | 67 | 71 | 73 | 79 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.60 | +5.53 | +6.64 | +3.07 | -4.37 | -6.20 | +2.94 | +7.65 | +7.54 | -7.12 | +6.55 |
Relative (%) | -3.6 | +33.1 | +39.7 | +18.3 | -26.2 | -37.1 | +17.6 | +45.8 | +45.1 | -42.6 | +39.2 | |
Steps (reduced) |
374 (38) |
385 (7) |
390 (12) |
399 (21) |
411 (33) |
422 (2) |
426 (6) |
436 (16) |
442 (22) |
444 (24) |
453 (33) |
Intervals
Degrees | Cents value | Approximate ratios (11-limit) |
---|---|---|
0 | 1/1 | |
1 | 16.7132 | 81/80 |
2 | 33.4264 | 45/44 |
3 | 50.1396 | 33/32 |
4 | 66.8529 | 25/24 |
5 | 83.5661 | 21/20 |
6 | 100.2793 | 35/33 |
7 | 116.9925 | 15/14 |
8 | 133.7057 | 27/25 |
9 | 150.4189 | 12/11 |
10 | 167.1321 | 11/10 |
11 | 183.8454 | 10/9 |
12 | 200.5586 | 9/8 |
13 | 217.2717 | 25/22 |
14 | 233.985 | 8/7 |
15 | 250.6982 | 81/70 |
16 | 267.4114 | 7/6 |
17 | 284.1246 | 33/28 |
18 | 300.8379 | 25/21 |
19 | 317.5511 | 6/5 |
20 | 334.2643 | 40/33 |
21 | 350.9775 | 11/9 |
22 | 367.6907 | 99/80 |
23 | 384.4039 | 5/4 |
24 | 401.1171 | 44/35 |
25 | 417.8304 | 14/11 |
26 | 434.5436 | 9/7 |
27 | 451.2568 | 35/27 |
28 | 467.97 | 21/16 |
29 | 484.6832 | 33/25 |
30 | 501.3964 | 4/3 |
31 | 518.1096 | 27/20 |
32 | 534.8229 | 15/11 |
33 | 551.536 | 11/8 |
34 | 568.2493 | 25/18 |
35 | 584.9625 | 7/5 |
36 | 601.6757 | 99/70 |
37 | 618.3889 | 10/7 |
38 | 635.1021 | 36/25 |
39 | 651.8154 | 16/11 |
40 | 668.5286 | 22/15 |
41 | 685.2418 | 40/27 |
42 | 701.955 | 3/2 |
43 | 718.6682 | 50/33 |
44 | 735.3814 | 32/21 |
45 | 752.0946 | 54/35 |
46 | 768.8079 | 14/9 |
47 | 785.5211 | 11/7 |
48 | 802.2343 | 35/22 |
49 | 818.9475 | 8/5 |
50 | 835.6607 | 81/50 |
51 | 852.3739 | 18/11 |
52 | 869.0871 | 33/20 |
53 | 885.8004 | 5/3 |
54 | 902.5136 | 27/16 |
55 | 919.2268 | 56/33 |
56 | 935.94 | 12/7 |
57 | 952.6532 | 121/70 |
58 | 969.3664 | 7/4 |
59 | 986.0796 | 44/25 |
60 | 1002.7929 | 16/9 |
61 | 1019.506 | 9/5 |
62 | 1036.2193 | 20/11 |
63 | 1052.9235 | 11/6 |
64 | 1069.6457 | 50/27 |
65 | 1086.3589 | 15/8 |
66 | 1103.0721 | 66/35 |
67 | 1119.7854 | 21/11 |
68 | 1136.4986 | 27/14 |
69 | 1153.2118 | 35/18 |
70 | 1169.925 | 49/25 |
71 | 1186.6382 | 99/50 |
72 | 1203.3514 | 2/1 |
73 | 1220.0646 | 81/40 |
74 | 1236.7779 | 45/22 |
75 | 1253.4911 | 33/16 |
76 | 1270.2043 | 56/27 |
77 | 1286.9175 | 21/10 |
78 | 1303.6307 | 70/33 |
79 | 1320.3439 | 15/7 |
80 | 1337.05715 | 54/25 |
81 | 1353.7704 | 24/11 |
82 | 1370.4836 | 11/5 |
83 | 1387.1968 | 20/9 |
84 | 1403.91 | 9/4 |