114edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 113edt 114edt 115edt →
Prime factorization 2 × 3 × 19
Step size 16.6838¢ 
Octave 72\114edt (1201.23¢) (→12\19edt)
Consistency limit 17
Distinct consistency limit 11

114 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 114edt or 114ed3), is a nonoctave tuning system that divides the interval of 3/1 into 114 equal parts of about 16.7 ¢ each. Each step represents a frequency ratio of 31/114, or the 114th root of 3.

114EDT is related to 72 edo, but with the 3/1 rather than the 2/1 being just, resulting in octaves being stretched by about 1.2347 cents stretched. It is consistent to the 18-integer-limit, and significantly improves on 72edo's approximation to 13.

Lookalikes: 72edo, 186ed6

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 16.7 11.4
2 33.4 22.8
3 50.1 34.2 34/33, 35/34, 36/35
4 66.7 45.6 26/25, 27/26
5 83.4 57 21/20, 43/41
6 100.1 68.4 18/17, 35/33
7 116.8 79.8 31/29, 46/43
8 133.5 91.2 27/25, 40/37
9 150.2 102.6 12/11
10 166.8 114 11/10
11 183.5 125.4 10/9
12 200.2 136.8 46/41
13 216.9 148.2 17/15
14 233.6 159.6
15 250.3 171.1 37/32
16 266.9 182.5 7/6
17 283.6 193.9 33/28
18 300.3 205.3 25/21, 44/37
19 317 216.7 6/5
20 333.7 228.1 40/33
21 350.4 239.5
22 367 250.9 21/17, 47/38
23 383.7 262.3
24 400.4 273.7 29/23, 34/27
25 417.1 285.1 14/11
26 433.8 296.5 9/7
27 450.5 307.9 35/27, 48/37
28 467.1 319.3
29 483.8 330.7 37/28, 41/31, 45/34
30 500.5 342.1
31 517.2 353.5 31/23
32 533.9 364.9 34/25
33 550.6 376.3 11/8
34 567.2 387.7 25/18, 43/31
35 583.9 399.1 7/5
36 600.6 410.5 41/29
37 617.3 421.9 10/7
38 634 433.3
39 650.7 444.7 16/11
40 667.4 456.1 25/17, 47/32
41 684 467.5 43/29, 46/31
42 700.7 478.9 3/2
43 717.4 490.4
44 734.1 501.8 26/17
45 750.8 513.2 37/24
46 767.5 524.6
47 784.1 536 11/7
48 800.8 547.4 27/17, 46/29
49 817.5 558.8
50 834.2 570.2 34/21
51 850.9 581.6 18/11
52 867.6 593 33/20
53 884.2 604.4 5/3
54 900.9 615.8 32/19, 37/22
55 917.6 627.2 17/10
56 934.3 638.6 12/7
57 951 650 26/15, 45/26
58 967.7 661.4 7/4
59 984.3 672.8 30/17
60 1001 684.2 41/23
61 1017.7 695.6 9/5
62 1034.4 707 20/11
63 1051.1 718.4 11/6
64 1067.8 729.8
65 1084.4 741.2 43/23
66 1101.1 752.6 17/9
67 1117.8 764 21/11
68 1134.5 775.4
69 1151.2 786.8 35/18
70 1167.9 798.2
71 1184.6 809.6
72 1201.2 821.1 2/1
73 1217.9 832.5
74 1234.6 843.9
75 1251.3 855.3 33/16, 35/17
76 1268 866.7
77 1284.7 878.1 21/10
78 1301.3 889.5
79 1318 900.9 15/7
80 1334.7 912.3
81 1351.4 923.7 24/11
82 1368.1 935.1
83 1384.8 946.5
84 1401.4 957.9
85 1418.1 969.3 34/15
86 1434.8 980.7
87 1451.5 992.1 37/16
88 1468.2 1003.5 7/3
89 1484.9 1014.9 33/14
90 1501.5 1026.3
91 1518.2 1037.7
92 1534.9 1049.1 17/7
93 1551.6 1060.5
94 1568.3 1071.9 47/19
95 1585 1083.3 5/2
96 1601.6 1094.7
97 1618.3 1106.1 28/11
98 1635 1117.5 18/7
99 1651.7 1128.9
100 1668.4 1140.4
101 1685.1 1151.8 45/17
102 1701.7 1163.2
103 1718.4 1174.6 27/10
104 1735.1 1186 30/11
105 1751.8 1197.4 11/4
106 1768.5 1208.8 25/9
107 1785.2 1220.2
108 1801.9 1231.6 17/6
109 1818.5 1243 20/7
110 1835.2 1254.4 26/9
111 1851.9 1265.8 35/12
112 1868.6 1277.2
113 1885.3 1288.6
114 1902 1300 3/1

Harmonics

Approximation of harmonics in 114edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +1.23 +0.00 +2.47 -0.12 +1.23 +1.30 +3.70 +0.00 +1.12 +2.95 +2.47
Relative (%) +7.4 +0.0 +14.8 -0.7 +7.4 +7.8 +22.2 +0.0 +6.7 +17.7 +14.8
Steps
(reduced)
72
(72)
114
(0)
144
(30)
167
(53)
186
(72)
202
(88)
216
(102)
228
(0)
239
(11)
249
(21)
258
(30)
Approximation of harmonics in 114edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -2.63 +2.54 -0.12 +4.94 +0.09 +1.23 +7.73 +2.35 +1.30 +4.19 -6.03
Relative (%) -15.8 +15.2 -0.7 +29.6 +0.5 +7.4 +46.4 +14.1 +7.8 +25.1 -36.2
Steps
(reduced)
266
(38)
274
(46)
281
(53)
288
(60)
294
(66)
300
(72)
306
(78)
311
(83)
316
(88)
321
(93)
325
(97)