114edt
Jump to navigation
Jump to search
Prime factorization
2 × 3 × 19
Step size
16.6838¢
Octave
72\114edt (1201.23¢) (→12\19edt)
Consistency limit
17
Distinct consistency limit
11
![]() |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 113edt | 114edt | 115edt → |
114 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 114edt or 114ed3), is a nonoctave tuning system that divides the interval of 3/1 into 114 equal parts of about 16.7 ¢ each. Each step represents a frequency ratio of 31/114, or the 114th root of 3.
114EDT is related to 72 edo, but with the 3/1 rather than the 2/1 being just, resulting in octaves being stretched by about 1.2347 cents stretched. It is consistent to the 18-integer-limit, and significantly improves on 72edo's approximation to 13.
Intervals
Steps | Cents | Hekts | Approximate ratios |
---|---|---|---|
0 | 0 | 0 | 1/1 |
1 | 16.7 | 11.4 | |
2 | 33.4 | 22.8 | |
3 | 50.1 | 34.2 | 34/33, 35/34, 36/35 |
4 | 66.7 | 45.6 | 26/25, 27/26 |
5 | 83.4 | 57 | 21/20, 43/41 |
6 | 100.1 | 68.4 | 18/17, 35/33 |
7 | 116.8 | 79.8 | 31/29, 46/43 |
8 | 133.5 | 91.2 | 27/25, 40/37 |
9 | 150.2 | 102.6 | 12/11 |
10 | 166.8 | 114 | 11/10 |
11 | 183.5 | 125.4 | 10/9 |
12 | 200.2 | 136.8 | 46/41 |
13 | 216.9 | 148.2 | 17/15 |
14 | 233.6 | 159.6 | |
15 | 250.3 | 171.1 | 37/32 |
16 | 266.9 | 182.5 | 7/6 |
17 | 283.6 | 193.9 | 33/28 |
18 | 300.3 | 205.3 | 25/21, 44/37 |
19 | 317 | 216.7 | 6/5 |
20 | 333.7 | 228.1 | 40/33 |
21 | 350.4 | 239.5 | |
22 | 367 | 250.9 | 21/17, 47/38 |
23 | 383.7 | 262.3 | |
24 | 400.4 | 273.7 | 29/23, 34/27 |
25 | 417.1 | 285.1 | 14/11 |
26 | 433.8 | 296.5 | 9/7 |
27 | 450.5 | 307.9 | 35/27, 48/37 |
28 | 467.1 | 319.3 | |
29 | 483.8 | 330.7 | 37/28, 41/31, 45/34 |
30 | 500.5 | 342.1 | |
31 | 517.2 | 353.5 | 31/23 |
32 | 533.9 | 364.9 | 34/25 |
33 | 550.6 | 376.3 | 11/8 |
34 | 567.2 | 387.7 | 25/18, 43/31 |
35 | 583.9 | 399.1 | 7/5 |
36 | 600.6 | 410.5 | 41/29 |
37 | 617.3 | 421.9 | 10/7 |
38 | 634 | 433.3 | |
39 | 650.7 | 444.7 | 16/11 |
40 | 667.4 | 456.1 | 25/17, 47/32 |
41 | 684 | 467.5 | 43/29, 46/31 |
42 | 700.7 | 478.9 | 3/2 |
43 | 717.4 | 490.4 | |
44 | 734.1 | 501.8 | 26/17 |
45 | 750.8 | 513.2 | 37/24 |
46 | 767.5 | 524.6 | |
47 | 784.1 | 536 | 11/7 |
48 | 800.8 | 547.4 | 27/17, 46/29 |
49 | 817.5 | 558.8 | |
50 | 834.2 | 570.2 | 34/21 |
51 | 850.9 | 581.6 | 18/11 |
52 | 867.6 | 593 | 33/20 |
53 | 884.2 | 604.4 | 5/3 |
54 | 900.9 | 615.8 | 32/19, 37/22 |
55 | 917.6 | 627.2 | 17/10 |
56 | 934.3 | 638.6 | 12/7 |
57 | 951 | 650 | 26/15, 45/26 |
58 | 967.7 | 661.4 | 7/4 |
59 | 984.3 | 672.8 | 30/17 |
60 | 1001 | 684.2 | 41/23 |
61 | 1017.7 | 695.6 | 9/5 |
62 | 1034.4 | 707 | 20/11 |
63 | 1051.1 | 718.4 | 11/6 |
64 | 1067.8 | 729.8 | |
65 | 1084.4 | 741.2 | 43/23 |
66 | 1101.1 | 752.6 | 17/9 |
67 | 1117.8 | 764 | 21/11 |
68 | 1134.5 | 775.4 | |
69 | 1151.2 | 786.8 | 35/18 |
70 | 1167.9 | 798.2 | |
71 | 1184.6 | 809.6 | |
72 | 1201.2 | 821.1 | 2/1 |
73 | 1217.9 | 832.5 | |
74 | 1234.6 | 843.9 | |
75 | 1251.3 | 855.3 | 33/16, 35/17 |
76 | 1268 | 866.7 | |
77 | 1284.7 | 878.1 | 21/10 |
78 | 1301.3 | 889.5 | |
79 | 1318 | 900.9 | 15/7 |
80 | 1334.7 | 912.3 | |
81 | 1351.4 | 923.7 | 24/11 |
82 | 1368.1 | 935.1 | |
83 | 1384.8 | 946.5 | |
84 | 1401.4 | 957.9 | |
85 | 1418.1 | 969.3 | 34/15 |
86 | 1434.8 | 980.7 | |
87 | 1451.5 | 992.1 | 37/16 |
88 | 1468.2 | 1003.5 | 7/3 |
89 | 1484.9 | 1014.9 | 33/14 |
90 | 1501.5 | 1026.3 | |
91 | 1518.2 | 1037.7 | |
92 | 1534.9 | 1049.1 | 17/7 |
93 | 1551.6 | 1060.5 | |
94 | 1568.3 | 1071.9 | 47/19 |
95 | 1585 | 1083.3 | 5/2 |
96 | 1601.6 | 1094.7 | |
97 | 1618.3 | 1106.1 | 28/11 |
98 | 1635 | 1117.5 | 18/7 |
99 | 1651.7 | 1128.9 | |
100 | 1668.4 | 1140.4 | |
101 | 1685.1 | 1151.8 | 45/17 |
102 | 1701.7 | 1163.2 | |
103 | 1718.4 | 1174.6 | 27/10 |
104 | 1735.1 | 1186 | 30/11 |
105 | 1751.8 | 1197.4 | 11/4 |
106 | 1768.5 | 1208.8 | 25/9 |
107 | 1785.2 | 1220.2 | |
108 | 1801.9 | 1231.6 | 17/6 |
109 | 1818.5 | 1243 | 20/7 |
110 | 1835.2 | 1254.4 | 26/9 |
111 | 1851.9 | 1265.8 | 35/12 |
112 | 1868.6 | 1277.2 | |
113 | 1885.3 | 1288.6 | |
114 | 1902 | 1300 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.23 | +0.00 | +2.47 | -0.12 | +1.23 | +1.30 | +3.70 | +0.00 | +1.12 | +2.95 | +2.47 |
Relative (%) | +7.4 | +0.0 | +14.8 | -0.7 | +7.4 | +7.8 | +22.2 | +0.0 | +6.7 | +17.7 | +14.8 | |
Steps (reduced) |
72 (72) |
114 (0) |
144 (30) |
167 (53) |
186 (72) |
202 (88) |
216 (102) |
228 (0) |
239 (11) |
249 (21) |
258 (30) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.63 | +2.54 | -0.12 | +4.94 | +0.09 | +1.23 | +7.73 | +2.35 | +1.30 | +4.19 | -6.03 |
Relative (%) | -15.8 | +15.2 | -0.7 | +29.6 | +0.5 | +7.4 | +46.4 | +14.1 | +7.8 | +25.1 | -36.2 | |
Steps (reduced) |
266 (38) |
274 (46) |
281 (53) |
288 (60) |
294 (66) |
300 (72) |
306 (78) |
311 (83) |
316 (88) |
321 (93) |
325 (97) |