115edt
Jump to navigation
Jump to search
Prime factorization
5 × 23
Step size
16.5387¢
Octave
73\115edt (1207.33¢)
Consistency limit
2
Distinct consistency limit
2
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 114edt | 115edt | 116edt → |
115 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 115edt or 115ed3), is a nonoctave tuning system that divides the interval of 3/1 into 115 equal parts of about 16.5 ¢ each. Each step represents a frequency ratio of 31/115, or the 115th root of 3.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 16.5 | |
2 | 33.1 | |
3 | 49.6 | |
4 | 66.2 | 27/26 |
5 | 82.7 | 21/20, 43/41 |
6 | 99.2 | 18/17 |
7 | 115.8 | 31/29, 46/43 |
8 | 132.3 | 41/38 |
9 | 148.8 | |
10 | 165.4 | 11/10 |
11 | 181.9 | 10/9 |
12 | 198.5 | 37/33, 46/41 |
13 | 215 | 43/38 |
14 | 231.5 | |
15 | 248.1 | 15/13 |
16 | 264.6 | |
17 | 281.2 | 20/17 |
18 | 297.7 | |
19 | 314.2 | |
20 | 330.8 | 23/19 |
21 | 347.3 | 11/9 |
22 | 363.9 | 21/17, 37/30 |
23 | 380.4 | |
24 | 396.9 | 39/31 |
25 | 413.5 | 33/26, 47/37 |
26 | 430 | |
27 | 446.5 | 22/17 |
28 | 463.1 | |
29 | 479.6 | |
30 | 496.2 | |
31 | 512.7 | 35/26, 39/29 |
32 | 529.2 | |
33 | 545.8 | 37/27 |
34 | 562.3 | |
35 | 578.9 | |
36 | 595.4 | |
37 | 611.9 | 37/26, 47/33 |
38 | 628.5 | |
39 | 645 | 45/31 |
40 | 661.5 | |
41 | 678.1 | |
42 | 694.6 | |
43 | 711.2 | |
44 | 727.7 | 35/23 |
45 | 744.2 | |
46 | 760.8 | 45/29 |
47 | 777.3 | 47/30 |
48 | 793.9 | |
49 | 810.4 | |
50 | 826.9 | |
51 | 843.5 | |
52 | 860 | |
53 | 876.6 | |
54 | 893.1 | |
55 | 909.6 | |
56 | 926.2 | |
57 | 942.7 | |
58 | 959.2 | 47/27 |
59 | 975.8 | |
60 | 992.3 | |
61 | 1008.9 | |
62 | 1025.4 | 38/21, 47/26 |
63 | 1041.9 | |
64 | 1058.5 | 35/19 |
65 | 1075 | |
66 | 1091.6 | |
67 | 1108.1 | |
68 | 1124.6 | |
69 | 1141.2 | 29/15 |
70 | 1157.7 | 41/21 |
71 | 1174.3 | |
72 | 1190.8 | |
73 | 1207.3 | |
74 | 1223.9 | |
75 | 1240.4 | 43/21 |
76 | 1256.9 | 31/15 |
77 | 1273.5 | |
78 | 1290 | |
79 | 1306.6 | |
80 | 1323.1 | 43/20 |
81 | 1339.6 | |
82 | 1356.2 | 46/21 |
83 | 1372.7 | |
84 | 1389.3 | 29/13 |
85 | 1405.8 | |
86 | 1422.3 | |
87 | 1438.9 | |
88 | 1455.4 | |
89 | 1471.9 | |
90 | 1488.5 | 26/11 |
91 | 1505 | 31/13 |
92 | 1521.6 | |
93 | 1538.1 | 17/7 |
94 | 1554.6 | 27/11 |
95 | 1571.2 | |
96 | 1587.7 | |
97 | 1604.3 | |
98 | 1620.8 | |
99 | 1637.3 | |
100 | 1653.9 | 13/5 |
101 | 1670.4 | |
102 | 1687 | |
103 | 1703.5 | |
104 | 1720 | 27/10 |
105 | 1736.6 | 30/11 |
106 | 1753.1 | |
107 | 1769.6 | |
108 | 1786.2 | |
109 | 1802.7 | 17/6 |
110 | 1819.3 | 20/7 |
111 | 1835.8 | 26/9 |
112 | 1852.3 | |
113 | 1868.9 | |
114 | 1885.4 | |
115 | 1902 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +7.33 | +0.00 | -1.88 | -7.81 | +7.33 | +5.08 | +5.45 | +0.00 | -0.48 | -0.09 | -1.88 |
Relative (%) | +44.3 | +0.0 | -11.4 | -47.2 | +44.3 | +30.7 | +32.9 | +0.0 | -2.9 | -0.6 | -11.4 | |
Steps (reduced) |
73 (73) |
115 (0) |
145 (30) |
168 (53) |
188 (73) |
204 (89) |
218 (103) |
230 (0) |
241 (11) |
251 (21) |
260 (30) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -8.15 | -4.13 | -7.81 | -3.77 | +7.05 | +7.33 | -3.58 | +6.85 | +5.08 | +7.23 | -3.57 |
Relative (%) | -49.3 | -25.0 | -47.2 | -22.8 | +42.6 | +44.3 | -21.7 | +41.4 | +30.7 | +43.7 | -21.6 | |
Steps (reduced) |
268 (38) |
276 (46) |
283 (53) |
290 (60) |
297 (67) |
303 (73) |
308 (78) |
314 (84) |
319 (89) |
324 (94) |
328 (98) |