116edt
Jump to navigation
Jump to search
Prime factorization
22 × 29
Step size
16.3962¢
Octave
73\116edt (1196.92¢)
Consistency limit
5
Distinct consistency limit
5
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 115edt | 116edt | 117edt → |
116 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 116edt or 116ed3), is a nonoctave tuning system that divides the interval of 3/1 into 116 equal parts of about 16.4 ¢ each. Each step represents a frequency ratio of 31/116, or the 116th root of 3.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 16.396 | |
2 | 32.792 | |
3 | 49.188 | 35/34, 36/35, 37/36 |
4 | 65.585 | 27/26 |
5 | 81.981 | 22/21, 43/41 |
6 | 98.377 | 18/17 |
7 | 114.773 | 31/29, 46/43 |
8 | 131.169 | 27/25, 41/38 |
9 | 147.565 | 37/34 |
10 | 163.962 | 11/10 |
11 | 180.358 | 10/9 |
12 | 196.754 | 37/33 |
13 | 213.15 | 26/23, 43/38 |
14 | 229.546 | 8/7 |
15 | 245.942 | 15/13, 38/33 |
16 | 262.339 | |
17 | 278.735 | 27/23 |
18 | 295.131 | |
19 | 311.527 | |
20 | 327.923 | |
21 | 344.319 | |
22 | 360.716 | |
23 | 377.112 | 41/33, 46/37 |
24 | 393.508 | |
25 | 409.904 | 19/15 |
26 | 426.3 | 23/18 |
27 | 442.696 | |
28 | 459.093 | 30/23, 43/33 |
29 | 475.489 | 25/19 |
30 | 491.885 | |
31 | 508.281 | |
32 | 524.677 | 23/17 |
33 | 541.073 | 26/19, 41/30 |
34 | 557.47 | |
35 | 573.866 | 46/33 |
36 | 590.262 | 38/27 |
37 | 606.658 | 27/19 |
38 | 623.054 | 33/23, 43/30 |
39 | 639.45 | |
40 | 655.847 | 19/13 |
41 | 672.243 | |
42 | 688.639 | |
43 | 705.035 | |
44 | 721.431 | 41/27, 47/31 |
45 | 737.827 | 49/32 |
46 | 754.224 | 17/11 |
47 | 770.62 | 39/25 |
48 | 787.016 | 41/26 |
49 | 803.412 | 35/22 |
50 | 819.808 | |
51 | 836.204 | 34/21, 47/29 |
52 | 852.601 | 18/11 |
53 | 868.997 | 33/20, 38/23, 43/26 |
54 | 885.393 | 5/3 |
55 | 901.789 | 37/22 |
56 | 918.185 | 17/10 |
57 | 934.581 | 12/7 |
58 | 950.978 | 26/15, 45/26 |
59 | 967.374 | 7/4 |
60 | 983.77 | 30/17 |
61 | 1000.166 | 41/23 |
62 | 1016.562 | 9/5 |
63 | 1032.958 | 20/11 |
64 | 1049.354 | 11/6 |
65 | 1065.751 | 37/20 |
66 | 1082.147 | 43/23 |
67 | 1098.543 | |
68 | 1114.939 | 40/21 |
69 | 1131.335 | 25/13 |
70 | 1147.731 | 33/17 |
71 | 1164.128 | |
72 | 1180.524 | |
73 | 1196.92 | |
74 | 1213.316 | |
75 | 1229.712 | |
76 | 1246.108 | 37/18, 39/19 |
77 | 1262.505 | |
78 | 1278.901 | 23/11, 44/21 |
79 | 1295.297 | 19/9 |
80 | 1311.693 | |
81 | 1328.089 | |
82 | 1344.485 | 37/17 |
83 | 1360.882 | |
84 | 1377.278 | |
85 | 1393.674 | 38/17 |
86 | 1410.07 | |
87 | 1426.466 | 41/18 |
88 | 1442.862 | 23/10 |
89 | 1459.259 | |
90 | 1475.655 | |
91 | 1492.051 | 45/19 |
92 | 1508.447 | 43/18 |
93 | 1524.843 | 41/17 |
94 | 1541.239 | |
95 | 1557.636 | |
96 | 1574.032 | |
97 | 1590.428 | |
98 | 1606.824 | 43/17 |
99 | 1623.22 | 23/9 |
100 | 1639.616 | |
101 | 1656.013 | 13/5 |
102 | 1672.409 | 21/8 |
103 | 1688.805 | |
104 | 1705.201 | |
105 | 1721.597 | 27/10, 46/17 |
106 | 1737.993 | 30/11 |
107 | 1754.39 | |
108 | 1770.786 | 25/9 |
109 | 1787.182 | |
110 | 1803.578 | 17/6 |
111 | 1819.974 | |
112 | 1836.37 | 26/9 |
113 | 1852.767 | 35/12 |
114 | 1869.163 | |
115 | 1885.559 | |
116 | 1901.955 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -3.08 | +0.00 | -6.16 | +1.03 | -3.08 | -7.61 | +7.16 | +0.00 | -2.05 | -3.09 | -6.16 |
Relative (%) | -18.8 | +0.0 | -37.6 | +6.3 | -18.8 | -46.4 | +43.6 | +0.0 | -12.5 | -18.8 | -37.6 | |
Steps (reduced) |
73 (73) |
116 (0) |
146 (30) |
170 (54) |
189 (73) |
205 (89) |
220 (104) |
232 (0) |
243 (11) |
253 (21) |
262 (30) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +2.83 | +5.70 | +1.03 | +4.08 | -2.50 | -3.08 | +1.69 | -5.13 | -7.61 | -6.17 | -1.14 |
Relative (%) | +17.3 | +34.8 | +6.3 | +24.9 | -15.3 | -18.8 | +10.3 | -31.3 | -46.4 | -37.6 | -7.0 | |
Steps (reduced) |
271 (39) |
279 (47) |
286 (54) |
293 (61) |
299 (67) |
305 (73) |
311 (79) |
316 (84) |
321 (89) |
326 (94) |
331 (99) |