116edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 115edt 116edt 117edt →
Prime factorization 22 × 29
Step size 16.3962¢ 
Octave 73\116edt (1196.92¢)
Consistency limit 5
Distinct consistency limit 5

116 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 116edt or 116ed3), is a nonoctave tuning system that divides the interval of 3/1 into 116 equal parts of about 16.4 ¢ each. Each step represents a frequency ratio of 31/116, or the 116th root of 3.

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 16.4 11.2
2 32.8 22.4
3 49.2 33.6 35/34, 36/35, 37/36
4 65.6 44.8 27/26
5 82 56 22/21, 43/41
6 98.4 67.2 18/17
7 114.8 78.4 31/29, 46/43
8 131.2 89.7 27/25, 41/38
9 147.6 100.9 37/34
10 164 112.1 11/10
11 180.4 123.3 10/9
12 196.8 134.5 37/33
13 213.2 145.7 26/23, 43/38
14 229.5 156.9 8/7
15 245.9 168.1 15/13, 38/33
16 262.3 179.3
17 278.7 190.5 27/23
18 295.1 201.7
19 311.5 212.9
20 327.9 224.1
21 344.3 235.3
22 360.7 246.6
23 377.1 257.8 41/33, 46/37
24 393.5 269
25 409.9 280.2 19/15
26 426.3 291.4 23/18
27 442.7 302.6
28 459.1 313.8 30/23, 43/33
29 475.5 325 25/19
30 491.9 336.2
31 508.3 347.4
32 524.7 358.6 23/17
33 541.1 369.8 26/19, 41/30
34 557.5 381
35 573.9 392.2 46/33
36 590.3 403.4 38/27
37 606.7 414.7 27/19
38 623.1 425.9 33/23, 43/30
39 639.5 437.1
40 655.8 448.3 19/13
41 672.2 459.5
42 688.6 470.7
43 705 481.9
44 721.4 493.1 41/27, 47/31
45 737.8 504.3 49/32
46 754.2 515.5 17/11
47 770.6 526.7 39/25
48 787 537.9 41/26
49 803.4 549.1 35/22
50 819.8 560.3
51 836.2 571.6 34/21, 47/29
52 852.6 582.8 18/11
53 869 594 33/20, 38/23, 43/26
54 885.4 605.2 5/3
55 901.8 616.4 37/22
56 918.2 627.6 17/10
57 934.6 638.8 12/7
58 951 650 26/15, 45/26
59 967.4 661.2 7/4
60 983.8 672.4 30/17
61 1000.2 683.6 41/23
62 1016.6 694.8 9/5
63 1033 706 20/11
64 1049.4 717.2 11/6
65 1065.8 728.4 37/20
66 1082.1 739.7 43/23
67 1098.5 750.9
68 1114.9 762.1 40/21
69 1131.3 773.3 25/13
70 1147.7 784.5 33/17
71 1164.1 795.7
72 1180.5 806.9
73 1196.9 818.1
74 1213.3 829.3
75 1229.7 840.5
76 1246.1 851.7 37/18, 39/19
77 1262.5 862.9
78 1278.9 874.1 23/11, 44/21
79 1295.3 885.3 19/9
80 1311.7 896.6
81 1328.1 907.8
82 1344.5 919 37/17
83 1360.9 930.2
84 1377.3 941.4
85 1393.7 952.6 38/17
86 1410.1 963.8
87 1426.5 975 41/18
88 1442.9 986.2 23/10
89 1459.3 997.4
90 1475.7 1008.6
91 1492.1 1019.8 45/19
92 1508.4 1031 43/18
93 1524.8 1042.2 41/17
94 1541.2 1053.4
95 1557.6 1064.7
96 1574 1075.9
97 1590.4 1087.1
98 1606.8 1098.3 43/17
99 1623.2 1109.5 23/9
100 1639.6 1120.7
101 1656 1131.9 13/5
102 1672.4 1143.1 21/8
103 1688.8 1154.3
104 1705.2 1165.5
105 1721.6 1176.7 27/10, 46/17
106 1738 1187.9 30/11
107 1754.4 1199.1
108 1770.8 1210.3 25/9
109 1787.2 1221.6
110 1803.6 1232.8 17/6
111 1820 1244
112 1836.4 1255.2 26/9
113 1852.8 1266.4 35/12
114 1869.2 1277.6
115 1885.6 1288.8
116 1902 1300 3/1

Harmonics

Approximation of harmonics in 116edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -3.08 +0.00 -6.16 +1.03 -3.08 -7.61 +7.16 +0.00 -2.05 -3.09 -6.16
Relative (%) -18.8 +0.0 -37.6 +6.3 -18.8 -46.4 +43.6 +0.0 -12.5 -18.8 -37.6
Steps
(reduced)
73
(73)
116
(0)
146
(30)
170
(54)
189
(73)
205
(89)
220
(104)
232
(0)
243
(11)
253
(21)
262
(30)
Approximation of harmonics in 116edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +2.83 +5.70 +1.03 +4.08 -2.50 -3.08 +1.69 -5.13 -7.61 -6.17 -1.14
Relative (%) +17.3 +34.8 +6.3 +24.9 -15.3 -18.8 +10.3 -31.3 -46.4 -37.6 -7.0
Steps
(reduced)
271
(39)
279
(47)
286
(54)
293
(61)
299
(67)
305
(73)
311
(79)
316
(84)
321
(89)
326
(94)
331
(99)