116edt
Jump to navigation
Jump to search
Prime factorization
22 × 29
Step size
16.3962¢
Octave
73\116edt (1196.92¢)
Consistency limit
5
Distinct consistency limit
5
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 115edt | 116edt | 117edt → |
116 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 116edt or 116ed3), is a nonoctave tuning system that divides the interval of 3/1 into 116 equal parts of about 16.4 ¢ each. Each step represents a frequency ratio of 31/116, or the 116th root of 3.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 16.4 | |
2 | 32.8 | |
3 | 49.2 | 35/34, 36/35, 37/36 |
4 | 65.6 | 27/26 |
5 | 82 | 22/21, 43/41 |
6 | 98.4 | 18/17 |
7 | 114.8 | 31/29, 46/43 |
8 | 131.2 | 27/25, 41/38 |
9 | 147.6 | 37/34 |
10 | 164 | 11/10 |
11 | 180.4 | 10/9 |
12 | 196.8 | 37/33 |
13 | 213.2 | 26/23, 43/38 |
14 | 229.5 | 8/7 |
15 | 245.9 | 15/13, 38/33 |
16 | 262.3 | |
17 | 278.7 | 27/23 |
18 | 295.1 | |
19 | 311.5 | |
20 | 327.9 | |
21 | 344.3 | |
22 | 360.7 | |
23 | 377.1 | 41/33, 46/37 |
24 | 393.5 | |
25 | 409.9 | 19/15 |
26 | 426.3 | 23/18 |
27 | 442.7 | |
28 | 459.1 | 30/23, 43/33 |
29 | 475.5 | 25/19 |
30 | 491.9 | |
31 | 508.3 | |
32 | 524.7 | 23/17 |
33 | 541.1 | 26/19, 41/30 |
34 | 557.5 | |
35 | 573.9 | 46/33 |
36 | 590.3 | 38/27 |
37 | 606.7 | 27/19 |
38 | 623.1 | 33/23, 43/30 |
39 | 639.5 | |
40 | 655.8 | 19/13 |
41 | 672.2 | |
42 | 688.6 | |
43 | 705 | |
44 | 721.4 | 41/27, 47/31 |
45 | 737.8 | 49/32 |
46 | 754.2 | 17/11 |
47 | 770.6 | 39/25 |
48 | 787 | 41/26 |
49 | 803.4 | 35/22 |
50 | 819.8 | |
51 | 836.2 | 34/21, 47/29 |
52 | 852.6 | 18/11 |
53 | 869 | 33/20, 38/23, 43/26 |
54 | 885.4 | 5/3 |
55 | 901.8 | 37/22 |
56 | 918.2 | 17/10 |
57 | 934.6 | 12/7 |
58 | 951 | 26/15, 45/26 |
59 | 967.4 | 7/4 |
60 | 983.8 | 30/17 |
61 | 1000.2 | 41/23 |
62 | 1016.6 | 9/5 |
63 | 1033 | 20/11 |
64 | 1049.4 | 11/6 |
65 | 1065.8 | 37/20 |
66 | 1082.1 | 43/23 |
67 | 1098.5 | |
68 | 1114.9 | 40/21 |
69 | 1131.3 | 25/13 |
70 | 1147.7 | 33/17 |
71 | 1164.1 | |
72 | 1180.5 | |
73 | 1196.9 | |
74 | 1213.3 | |
75 | 1229.7 | |
76 | 1246.1 | 37/18, 39/19 |
77 | 1262.5 | |
78 | 1278.9 | 23/11, 44/21 |
79 | 1295.3 | 19/9 |
80 | 1311.7 | |
81 | 1328.1 | |
82 | 1344.5 | 37/17 |
83 | 1360.9 | |
84 | 1377.3 | |
85 | 1393.7 | 38/17 |
86 | 1410.1 | |
87 | 1426.5 | 41/18 |
88 | 1442.9 | 23/10 |
89 | 1459.3 | |
90 | 1475.7 | |
91 | 1492.1 | 45/19 |
92 | 1508.4 | 43/18 |
93 | 1524.8 | 41/17 |
94 | 1541.2 | |
95 | 1557.6 | |
96 | 1574 | |
97 | 1590.4 | |
98 | 1606.8 | 43/17 |
99 | 1623.2 | 23/9 |
100 | 1639.6 | |
101 | 1656 | 13/5 |
102 | 1672.4 | 21/8 |
103 | 1688.8 | |
104 | 1705.2 | |
105 | 1721.6 | 27/10, 46/17 |
106 | 1738 | 30/11 |
107 | 1754.4 | |
108 | 1770.8 | 25/9 |
109 | 1787.2 | |
110 | 1803.6 | 17/6 |
111 | 1820 | |
112 | 1836.4 | 26/9 |
113 | 1852.8 | 35/12 |
114 | 1869.2 | |
115 | 1885.6 | |
116 | 1902 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -3.08 | +0.00 | -6.16 | +1.03 | -3.08 | -7.61 | +7.16 | +0.00 | -2.05 | -3.09 | -6.16 |
Relative (%) | -18.8 | +0.0 | -37.6 | +6.3 | -18.8 | -46.4 | +43.6 | +0.0 | -12.5 | -18.8 | -37.6 | |
Steps (reduced) |
73 (73) |
116 (0) |
146 (30) |
170 (54) |
189 (73) |
205 (89) |
220 (104) |
232 (0) |
243 (11) |
253 (21) |
262 (30) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +2.83 | +5.70 | +1.03 | +4.08 | -2.50 | -3.08 | +1.69 | -5.13 | -7.61 | -6.17 | -1.14 |
Relative (%) | +17.3 | +34.8 | +6.3 | +24.9 | -15.3 | -18.8 | +10.3 | -31.3 | -46.4 | -37.6 | -7.0 | |
Steps (reduced) |
271 (39) |
279 (47) |
286 (54) |
293 (61) |
299 (67) |
305 (73) |
311 (79) |
316 (84) |
321 (89) |
326 (94) |
331 (99) |