117edt
Jump to navigation
Jump to search
Prime factorization
32 × 13
Step size
16.256¢
Octave
74\117edt (1202.95¢)
Consistency limit
4
Distinct consistency limit
4
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 116edt | 117edt | 118edt → |
117 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 117edt or 117ed3), is a nonoctave tuning system that divides the interval of 3/1 into 117 equal parts of about 16.3 ¢ each. Each step represents a frequency ratio of 31/117, or the 117th root of 3.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 16.256 | |
2 | 32.512 | |
3 | 48.768 | 37/36 |
4 | 65.024 | 27/26, 28/27 |
5 | 81.28 | 22/21 |
6 | 97.536 | 18/17 |
7 | 113.792 | 31/29, 47/44 |
8 | 130.048 | 14/13 |
9 | 146.304 | 37/34, 49/45 |
10 | 162.56 | 45/41 |
11 | 178.816 | |
12 | 195.072 | 47/42 |
13 | 211.328 | 26/23 |
14 | 227.584 | |
15 | 243.84 | 23/20 |
16 | 260.096 | 36/31, 43/37 |
17 | 276.352 | 27/23, 34/29 |
18 | 292.608 | |
19 | 308.864 | 43/36, 49/41 |
20 | 325.121 | |
21 | 341.377 | 28/23 |
22 | 357.633 | |
23 | 373.889 | 36/29, 41/33 |
24 | 390.145 | |
25 | 406.401 | 24/19, 43/34 |
26 | 422.657 | 23/18, 37/29 |
27 | 438.913 | |
28 | 455.169 | 13/10 |
29 | 471.425 | |
30 | 487.681 | |
31 | 503.937 | |
32 | 520.193 | 27/20 |
33 | 536.449 | 15/11 |
34 | 552.705 | |
35 | 568.961 | |
36 | 585.217 | |
37 | 601.473 | 17/12 |
38 | 617.729 | 10/7 |
39 | 633.985 | |
40 | 650.241 | |
41 | 666.497 | |
42 | 682.753 | 43/29, 46/31, 49/33 |
43 | 699.009 | |
44 | 715.265 | |
45 | 731.521 | 29/19 |
46 | 747.777 | 20/13, 37/24 |
47 | 764.033 | 14/9 |
48 | 780.289 | |
49 | 796.545 | 19/12 |
50 | 812.801 | |
51 | 829.057 | 21/13 |
52 | 845.313 | 44/27 |
53 | 861.569 | |
54 | 877.825 | |
55 | 894.081 | |
56 | 910.337 | 22/13 |
57 | 926.593 | 29/17 |
58 | 942.849 | 31/18 |
59 | 959.106 | 40/23, 47/27 |
60 | 975.362 | |
61 | 991.618 | 39/22 |
62 | 1007.874 | 34/19, 43/24 |
63 | 1024.13 | 47/26 |
64 | 1040.386 | 31/17 |
65 | 1056.642 | |
66 | 1072.898 | 13/7 |
67 | 1089.154 | |
68 | 1105.41 | 36/19 |
69 | 1121.666 | 44/23 |
70 | 1137.922 | 27/14 |
71 | 1154.178 | 37/19, 39/20 |
72 | 1170.434 | |
73 | 1186.69 | |
74 | 1202.946 | |
75 | 1219.202 | |
76 | 1235.458 | 47/23 |
77 | 1251.714 | |
78 | 1267.97 | |
79 | 1284.226 | 21/10 |
80 | 1300.482 | 36/17 |
81 | 1316.738 | |
82 | 1332.994 | |
83 | 1349.25 | |
84 | 1365.506 | 11/5 |
85 | 1381.762 | 20/9 |
86 | 1398.018 | |
87 | 1414.274 | 43/19 |
88 | 1430.53 | |
89 | 1446.786 | 30/13 |
90 | 1463.042 | |
91 | 1479.298 | 40/17, 47/20 |
92 | 1495.554 | 19/8 |
93 | 1511.81 | |
94 | 1528.066 | 29/12 |
95 | 1544.322 | |
96 | 1560.578 | |
97 | 1576.834 | |
98 | 1593.091 | |
99 | 1609.347 | |
100 | 1625.603 | 23/9 |
101 | 1641.859 | 31/12 |
102 | 1658.115 | |
103 | 1674.371 | |
104 | 1690.627 | |
105 | 1706.883 | |
106 | 1723.139 | 46/17 |
107 | 1739.395 | 41/15 |
108 | 1755.651 | |
109 | 1771.907 | 39/14 |
110 | 1788.163 | |
111 | 1804.419 | 17/6 |
112 | 1820.675 | |
113 | 1836.931 | 26/9 |
114 | 1853.187 | |
115 | 1869.443 | |
116 | 1885.699 | |
117 | 1901.955 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +2.95 | +0.00 | +5.89 | -6.53 | +2.95 | -3.83 | -7.42 | +0.00 | -3.59 | -6.03 | +5.89 |
Relative (%) | +18.1 | +0.0 | +36.2 | -40.2 | +18.1 | -23.6 | -45.6 | +0.0 | -22.1 | -37.1 | +36.2 | |
Steps (reduced) |
74 (74) |
117 (0) |
148 (31) |
171 (54) |
191 (74) |
207 (90) |
221 (104) |
234 (0) |
245 (11) |
255 (21) |
265 (31) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.63 | -0.88 | -6.53 | -4.47 | +4.36 | +2.95 | +6.88 | -0.64 | -3.83 | -3.09 | +1.24 |
Relative (%) | -16.2 | -5.4 | -40.2 | -27.5 | +26.8 | +18.1 | +42.3 | -3.9 | -23.6 | -19.0 | +7.6 | |
Steps (reduced) |
273 (39) |
281 (47) |
288 (54) |
295 (61) |
302 (68) |
308 (74) |
314 (80) |
319 (85) |
324 (90) |
329 (95) |
334 (100) |