113edt
Jump to navigation
Jump to search
Prime factorization
113 (prime)
Step size
16.8315¢
Octave
71\113edt (1195.03¢)
Consistency limit
2
Distinct consistency limit
2
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 112edt | 113edt | 114edt → |
113 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 113edt or 113ed3), is a nonoctave tuning system that divides the interval of 3/1 into 113 equal parts of about 16.8 ¢ each. Each step represents a frequency ratio of 31/113, or the 113th root of 3.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 16.8 | |
2 | 33.7 | |
3 | 50.5 | |
4 | 67.3 | 27/26 |
5 | 84.2 | 21/20, 43/41 |
6 | 101 | 18/17, 35/33 |
7 | 117.8 | 46/43 |
8 | 134.7 | 40/37 |
9 | 151.5 | |
10 | 168.3 | 43/39 |
11 | 185.1 | |
12 | 202 | |
13 | 218.8 | 42/37 |
14 | 235.6 | 47/41 |
15 | 252.5 | 22/19 |
16 | 269.3 | |
17 | 286.1 | 46/39 |
18 | 303 | 31/26 |
19 | 319.8 | |
20 | 336.6 | 17/14 |
21 | 353.5 | 27/22, 38/31 |
22 | 370.3 | 26/21 |
23 | 387.1 | |
24 | 404 | |
25 | 420.8 | 37/29 |
26 | 437.6 | |
27 | 454.4 | 13/10 |
28 | 471.3 | 46/35 |
29 | 488.1 | |
30 | 504.9 | |
31 | 521.8 | |
32 | 538.6 | 15/11 |
33 | 555.4 | 40/29 |
34 | 572.3 | |
35 | 589.1 | |
36 | 605.9 | 44/31 |
37 | 622.8 | 43/30 |
38 | 639.6 | 42/29 |
39 | 656.4 | 19/13 |
40 | 673.3 | 31/21 |
41 | 690.1 | |
42 | 706.9 | |
43 | 723.8 | 41/27, 44/29 |
44 | 740.6 | 23/15 |
45 | 757.4 | 31/20 |
46 | 774.2 | |
47 | 791.1 | 30/19 |
48 | 807.9 | |
49 | 824.7 | 29/18 |
50 | 841.6 | |
51 | 858.4 | |
52 | 875.2 | |
53 | 892.1 | |
54 | 908.9 | 22/13 |
55 | 925.7 | 29/17 |
56 | 942.6 | 31/18 |
57 | 959.4 | 47/27 |
58 | 976.2 | |
59 | 993.1 | 39/22 |
60 | 1009.9 | |
61 | 1026.7 | 38/21, 47/26 |
62 | 1043.6 | |
63 | 1060.4 | |
64 | 1077.2 | 41/22 |
65 | 1094 | |
66 | 1110.9 | 19/10 |
67 | 1127.7 | |
68 | 1144.5 | |
69 | 1161.4 | 43/22, 45/23 |
70 | 1178.2 | |
71 | 1195 | |
72 | 1211.9 | |
73 | 1228.7 | |
74 | 1245.5 | 37/18, 39/19 |
75 | 1262.4 | 29/14 |
76 | 1279.2 | 44/21 |
77 | 1296 | |
78 | 1312.9 | 47/22 |
79 | 1329.7 | 41/19 |
80 | 1346.5 | 37/17 |
81 | 1363.3 | 11/5 |
82 | 1380.2 | |
83 | 1397 | |
84 | 1413.8 | 43/19 |
85 | 1430.7 | |
86 | 1447.5 | 30/13 |
87 | 1464.3 | |
88 | 1481.2 | 40/17, 47/20 |
89 | 1498 | |
90 | 1514.8 | |
91 | 1531.7 | 46/19 |
92 | 1548.5 | 22/9 |
93 | 1565.3 | 42/17 |
94 | 1582.2 | |
95 | 1599 | |
96 | 1615.8 | |
97 | 1632.7 | |
98 | 1649.5 | |
99 | 1666.3 | |
100 | 1683.1 | 37/14 |
101 | 1700 | |
102 | 1716.8 | |
103 | 1733.6 | |
104 | 1750.5 | |
105 | 1767.3 | |
106 | 1784.1 | |
107 | 1801 | 17/6 |
108 | 1817.8 | 20/7 |
109 | 1834.6 | 26/9 |
110 | 1851.5 | |
111 | 1868.3 | |
112 | 1885.1 | |
113 | 1902 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -4.97 | +0.00 | +6.90 | +7.71 | -4.97 | -2.53 | +1.93 | +0.00 | +2.74 | +6.05 | +6.90 |
Relative (%) | -29.5 | +0.0 | +41.0 | +45.8 | -29.5 | -15.1 | +11.5 | +0.0 | +16.3 | +36.0 | +41.0 | |
Steps (reduced) |
71 (71) |
113 (0) |
143 (30) |
166 (53) |
184 (71) |
200 (87) |
214 (101) |
226 (0) |
237 (11) |
247 (21) |
256 (30) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +2.98 | -7.50 | +7.71 | -3.03 | -7.00 | -4.97 | +2.42 | -2.22 | -2.53 | +1.09 | +8.29 |
Relative (%) | +17.7 | -44.6 | +45.8 | -18.0 | -41.6 | -29.5 | +14.4 | -13.2 | -15.1 | +6.5 | +49.2 | |
Steps (reduced) |
264 (38) |
271 (45) |
279 (53) |
285 (59) |
291 (65) |
297 (71) |
303 (77) |
308 (82) |
313 (87) |
318 (92) |
323 (97) |