113edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 112edt 113edt 114edt →
Prime factorization 113 (prime)
Step size 16.8315¢ 
Octave 71\113edt (1195.03¢)
Consistency limit 2
Distinct consistency limit 2

113 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 113edt or 113ed3), is a nonoctave tuning system that divides the interval of 3/1 into 113 equal parts of about 16.8⁠ ⁠¢ each. Each step represents a frequency ratio of 31/113, or the 113th root of 3.

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 16.8 11.5
2 33.7 23
3 50.5 34.5
4 67.3 46 27/26
5 84.2 57.5 21/20, 43/41
6 101 69 18/17, 35/33
7 117.8 80.5 46/43
8 134.7 92 40/37
9 151.5 103.5
10 168.3 115 43/39
11 185.1 126.5
12 202 138.1
13 218.8 149.6 42/37
14 235.6 161.1 47/41
15 252.5 172.6 22/19
16 269.3 184.1
17 286.1 195.6 46/39
18 303 207.1 31/26
19 319.8 218.6
20 336.6 230.1 17/14
21 353.5 241.6 27/22, 38/31
22 370.3 253.1 26/21
23 387.1 264.6
24 404 276.1
25 420.8 287.6 37/29
26 437.6 299.1
27 454.4 310.6 13/10
28 471.3 322.1 46/35
29 488.1 333.6
30 504.9 345.1
31 521.8 356.6
32 538.6 368.1 15/11
33 555.4 379.6 40/29
34 572.3 391.2
35 589.1 402.7
36 605.9 414.2 44/31
37 622.8 425.7 43/30
38 639.6 437.2 42/29
39 656.4 448.7 19/13
40 673.3 460.2 31/21
41 690.1 471.7
42 706.9 483.2
43 723.8 494.7 41/27, 44/29
44 740.6 506.2 23/15
45 757.4 517.7 31/20
46 774.2 529.2
47 791.1 540.7 30/19
48 807.9 552.2
49 824.7 563.7 29/18
50 841.6 575.2
51 858.4 586.7
52 875.2 598.2
53 892.1 609.7
54 908.9 621.2 22/13
55 925.7 632.7 29/17
56 942.6 644.2 31/18
57 959.4 655.8 47/27
58 976.2 667.3
59 993.1 678.8 39/22
60 1009.9 690.3
61 1026.7 701.8 38/21, 47/26
62 1043.6 713.3
63 1060.4 724.8
64 1077.2 736.3 41/22
65 1094 747.8
66 1110.9 759.3 19/10
67 1127.7 770.8
68 1144.5 782.3
69 1161.4 793.8 43/22, 45/23
70 1178.2 805.3
71 1195 816.8
72 1211.9 828.3
73 1228.7 839.8
74 1245.5 851.3 37/18, 39/19
75 1262.4 862.8 29/14
76 1279.2 874.3 44/21
77 1296 885.8
78 1312.9 897.3 47/22
79 1329.7 908.8 41/19
80 1346.5 920.4 37/17
81 1363.3 931.9 11/5
82 1380.2 943.4
83 1397 954.9
84 1413.8 966.4 43/19
85 1430.7 977.9
86 1447.5 989.4 30/13
87 1464.3 1000.9
88 1481.2 1012.4 40/17, 47/20
89 1498 1023.9
90 1514.8 1035.4
91 1531.7 1046.9 46/19
92 1548.5 1058.4 22/9
93 1565.3 1069.9 42/17
94 1582.2 1081.4
95 1599 1092.9
96 1615.8 1104.4
97 1632.7 1115.9
98 1649.5 1127.4
99 1666.3 1138.9
100 1683.1 1150.4 37/14
101 1700 1161.9
102 1716.8 1173.5
103 1733.6 1185
104 1750.5 1196.5
105 1767.3 1208
106 1784.1 1219.5
107 1801 1231 17/6
108 1817.8 1242.5 20/7
109 1834.6 1254 26/9
110 1851.5 1265.5
111 1868.3 1277
112 1885.1 1288.5
113 1902 1300 3/1

Harmonics

Approximation of harmonics in 113edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -4.97 +0.00 +6.90 +7.71 -4.97 -2.53 +1.93 +0.00 +2.74 +6.05 +6.90
Relative (%) -29.5 +0.0 +41.0 +45.8 -29.5 -15.1 +11.5 +0.0 +16.3 +36.0 +41.0
Steps
(reduced)
71
(71)
113
(0)
143
(30)
166
(53)
184
(71)
200
(87)
214
(101)
226
(0)
237
(11)
247
(21)
256
(30)
Approximation of harmonics in 113edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +2.98 -7.50 +7.71 -3.03 -7.00 -4.97 +2.42 -2.22 -2.53 +1.09 +8.29
Relative (%) +17.7 -44.6 +45.8 -18.0 -41.6 -29.5 +14.4 -13.2 -15.1 +6.5 +49.2
Steps
(reduced)
264
(38)
271
(45)
279
(53)
285
(59)
291
(65)
297
(71)
303
(77)
308
(82)
313
(87)
318
(92)
323
(97)