112edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 111edt 112edt 113edt →
Prime factorization 24 × 7
Step size 16.9817¢ 
Octave 71\112edt (1205.7¢)
Consistency limit 2
Distinct consistency limit 2

112 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 112edt or 112ed3), is a nonoctave tuning system that divides the interval of 3/1 into 112 equal parts of about 17⁠ ⁠¢ each. Each step represents a frequency ratio of 31/112, or the 112th root of 3.

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 17 11.6
2 34 23.2
3 50.9 34.8
4 67.9 46.4 26/25
5 84.9 58
6 101.9 69.6 35/33
7 118.9 81.3 15/14
8 135.9 92.9
9 152.8 104.5
10 169.8 116.1 43/39
11 186.8 127.7 39/35
12 203.8 139.3
13 220.8 150.9 25/22, 42/37
14 237.7 162.5 31/27, 47/41
15 254.7 174.1 22/19
16 271.7 185.7
17 288.7 197.3 13/11
18 305.7 208.9 31/26, 37/31
19 322.7 220.5 41/34
20 339.6 232.1 28/23, 45/37
21 356.6 243.8 27/22, 43/35
22 373.6 255.4 31/25
23 390.6 267
24 407.6 278.6 19/15
25 424.5 290.2 23/18
26 441.5 301.8
27 458.5 313.4 30/23, 43/33
28 475.5 325 25/19
29 492.5 336.6
30 509.5 348.2
31 526.4 359.8 42/31
32 543.4 371.4 26/19, 37/27
33 560.4 383 29/21, 47/34
34 577.4 394.6
35 594.4 406.3 31/22
36 611.3 417.9 37/26
37 628.3 429.5
38 645.3 441.1 45/31
39 662.3 452.7 22/15, 41/28
40 679.3 464.3 37/25
41 696.3 475.9
42 713.2 487.5
43 730.2 499.1 29/19
44 747.2 510.7
45 764.2 522.3 14/9
46 781.2 533.9 11/7
47 798.1 545.5
48 815.1 557.1
49 832.1 568.8 21/13
50 849.1 580.4 31/19
51 866.1 592
52 883.1 603.6 5/3
53 900 615.2 37/22, 42/25
54 917 626.8 17/10
55 934 638.4
56 951 650 26/15, 45/26
57 968 661.6
58 984.9 673.2 30/17
59 1001.9 684.8 25/14, 41/23
60 1018.9 696.4 9/5
61 1035.9 708
62 1052.9 719.6
63 1069.8 731.3 13/7
64 1086.8 742.9
65 1103.8 754.5
66 1120.8 766.1 21/11
67 1137.8 777.7 27/14
68 1154.8 789.3 37/19
69 1171.7 800.9
70 1188.7 812.5
71 1205.7 824.1
72 1222.7 835.7
73 1239.7 847.3 43/21, 45/22
74 1256.6 858.9 31/15
75 1273.6 870.5
76 1290.6 882.1
77 1307.6 893.8
78 1324.6 905.4
79 1341.6 917
80 1358.5 928.6
81 1375.5 940.2 31/14
82 1392.5 951.8 38/17
83 1409.5 963.4
84 1426.5 975 41/18
85 1443.4 986.6 23/10
86 1460.4 998.2
87 1477.4 1009.8 47/20
88 1494.4 1021.4 45/19
89 1511.4 1033
90 1528.4 1044.6
91 1545.3 1056.3 22/9
92 1562.3 1067.9 37/15
93 1579.3 1079.5
94 1596.3 1091.1
95 1613.3 1102.7 33/13
96 1630.2 1114.3
97 1647.2 1125.9 44/17
98 1664.2 1137.5
99 1681.2 1149.1 37/14
100 1698.2 1160.7
101 1715.2 1172.3 35/13
102 1732.1 1183.9
103 1749.1 1195.5
104 1766.1 1207.1
105 1783.1 1218.8 14/5
106 1800.1 1230.4
107 1817 1242
108 1834 1253.6
109 1851 1265.2
110 1868 1276.8
111 1885 1288.4
112 1902 1300 3/1

Harmonics

Approximation of harmonics in 112edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +5.70 +0.00 -5.57 -1.31 +5.70 -6.44 +0.13 +0.00 +4.40 -7.77 -5.57
Relative (%) +33.6 +0.0 -32.8 -7.7 +33.6 -37.9 +0.8 +0.0 +25.9 -45.8 -32.8
Steps
(reduced)
71
(71)
112
(0)
141
(29)
164
(52)
183
(71)
198
(86)
212
(100)
224
(0)
235
(11)
244
(20)
253
(29)
Approximation of harmonics in 112edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -8.29 -0.74 -1.31 +5.83 +2.77 +5.70 -2.99 -6.88 -6.44 -2.07 +5.88
Relative (%) -48.8 -4.3 -7.7 +34.3 +16.3 +33.6 -17.6 -40.5 -37.9 -12.2 +34.6
Steps
(reduced)
261
(37)
269
(45)
276
(52)
283
(59)
289
(65)
295
(71)
300
(76)
305
(81)
310
(86)
315
(91)
320
(96)