258ed12

From Xenharmonic Wiki
Jump to navigation Jump to search
← 257ed12 258ed12 259ed12 →
Prime factorization 2 × 3 × 43
Step size 16.6742¢ 
Octave 72\258ed12 (1200.55¢) (→12\43ed12)
Twelfth 114\258ed12 (1900.86¢) (→19\43ed12)
Consistency limit 18
Distinct consistency limit 11

Division of the twelfth harmonic into 258 equal parts (258ED12) is very nearly identical to 72 EDO, but with the 12/1 rather than the 2/1 being just. The octave is about 0.55 cents stretched and the step size is about 16.674 cents.

Harmonics

Approximation of harmonics in 258ed12
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Error Absolute (¢) +0.55 -1.09 +1.09 -1.71 -0.55 -0.63 +1.64 -2.18 -1.17 +0.57 +0.00 -5.18 -0.08 -2.81 +2.18 -2.73 -1.64 +4.81 -0.62
Relative (%) +3.3 -6.5 +6.5 -10.3 -3.3 -3.8 +9.8 -13.1 -7.0 +3.4 +0.0 -31.1 -0.5 -16.8 +13.1 -16.4 -9.8 +28.8 -3.7
Steps
(reduced)
72
(72)
114
(114)
144
(144)
167
(167)
186
(186)
202
(202)
216
(216)
228
(228)
239
(239)
249
(249)
258
(0)
266
(8)
274
(16)
281
(23)
288
(30)
294
(36)
300
(42)
306
(48)
311
(53)