43ed12

From Xenharmonic Wiki
Jump to navigation Jump to search
← 42ed12 43ed12 44ed12 →
Prime factorization 43 (prime)
Step size 100.045¢ 
Octave 12\43ed12 (1200.55¢)
(convergent)
Twelfth 19\43ed12 (1900.86¢)
(convergent)
Consistency limit 10
Distinct consistency limit 6

43 equal divisions of the 12th harmonic (abbreviated 43ed12) is a nonoctave tuning system that divides the interval of 12/1 into 43 equal parts of about 100⁠ ⁠¢ each. Each step represents a frequency ratio of 121/43, or the 43rd root of 12.

43ed12 is very nearly identical to 12edo, but with the 12/1 rather than the 2/1 being just. The octave is about 0.55 cents stretched and the step size is about 100.045 cents.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 100 17/16, 18/17, 19/18
2 200.1 9/8, 28/25
3 300.1 19/16, 25/21
4 400.2 24/19, 29/23
5 500.2 4/3
6 600.3 17/12, 24/17
7 700.3 3/2
8 800.4 19/12, 27/17
9 900.4 27/16
10 1000.5 16/9, 25/14
11 1100.5 17/9
12 1200.5 2/1
13 1300.6 17/8
14 1400.6 9/4
15 1500.7 19/8
16 1600.7
17 1700.8 8/3
18 1800.8 17/6
19 1900.9 3/1
20 2000.9 19/6
21 2101 27/8
22 2201 25/7
23 2301
24 2401.1 4/1
25 2501.1 17/4
26 2601.2 9/2
27 2701.2 19/4
28 2801.3
29 2901.3 16/3
30 3001.4 17/3
31 3101.4 6/1
32 3201.5 19/3
33 3301.5 27/4
34 3401.5
35 3501.6
36 3601.6 8/1
37 3701.7 17/2
38 3801.7 9/1
39 3901.8 19/2
40 4001.8
41 4101.9
42 4201.9
43 4302 12/1

Harmonics

Approximation of harmonics in 43ed12
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +0.5 -1.1 +1.1 +15.0 -0.5 +32.7 +1.6 -2.2 +15.5 -49.5 +0.0
Relative (%) +0.5 -1.1 +1.1 +15.0 -0.5 +32.7 +1.6 -2.2 +15.5 -49.4 +0.0
Steps
(reduced)
12
(12)
19
(19)
24
(24)
28
(28)
31
(31)
34
(34)
36
(36)
38
(38)
40
(40)
41
(41)
43
(0)
Approximation of harmonics in 43ed12
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -38.5 +33.3 +13.9 +2.2 -2.7 -1.6 +4.8 +16.1 +31.6 -48.9 -25.8
Relative (%) -38.5 +33.3 +13.9 +2.2 -2.7 -1.6 +4.8 +16.0 +31.6 -48.9 -25.8
Steps
(reduced)
44
(1)
46
(3)
47
(4)
48
(5)
49
(6)
50
(7)
51
(8)
52
(9)
53
(10)
53
(10)
54
(11)

See also