13ed5/3
Jump to navigation
Jump to search
Prime factorization
13 (prime)
Step size
68.0276¢
Octave
18\13ed5/3 (1224.5¢)
Twelfth
28\13ed5/3 (1904.77¢)
(convergent)
Consistency limit
3
Distinct consistency limit
3
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 12ed5/3 | 13ed5/3 | 14ed5/3 → |
(convergent)
13 equal divisions of 5/3 (abbreviated 13ed5/3) is a nonoctave tuning system that divides the interval of 5/3 into 13 equal parts of about 68 ¢ each. Each step represents a frequency ratio of (5/3)1/13, or the 13th root of 5/3.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 68.028 | 19/18, 21/20, 22/21, 23/22 |
2 | 136.055 | 23/21 |
3 | 204.083 | 10/9, 17/15, 19/17 |
4 | 272.11 | 7/6, 13/11, 15/13, 22/19 |
5 | 340.138 | 6/5, 11/9, 23/19 |
6 | 408.166 | 19/15, 23/18 |
7 | 476.193 | 17/13 |
8 | 544.221 | 15/11, 23/17 |
9 | 612.248 | 10/7, 13/9 |
10 | 680.276 | 3/2, 19/13, 22/15 |
11 | 748.304 | 17/11, 23/15 |
12 | 816.331 | |
13 | 884.359 | 5/3 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +24.5 | +2.8 | -19.0 | +2.8 | +27.3 | +32.6 | +5.5 | +5.6 | +27.3 | -1.6 | -16.2 |
Relative (%) | +36.0 | +4.1 | -28.0 | +4.1 | +40.2 | +47.9 | +8.0 | +8.3 | +40.2 | -2.4 | -23.8 | |
Steps (reduced) |
18 (5) |
28 (2) |
35 (9) |
41 (2) |
46 (7) |
50 (11) |
53 (1) |
56 (4) |
59 (7) |
61 (9) |
63 (11) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -18.7 | -11.0 | +5.6 | +30.0 | -7.0 | +30.1 | +4.6 | -16.2 | -32.7 | +22.9 | +13.9 |
Relative (%) | -27.5 | -16.1 | +8.3 | +44.0 | -10.2 | +44.3 | +6.7 | -23.8 | -48.0 | +33.6 | +20.5 | |
Steps (reduced) |
65 (0) |
67 (2) |
69 (4) |
71 (6) |
72 (7) |
74 (9) |
75 (10) |
76 (11) |
77 (12) |
79 (1) |
80 (2) |