12ed5/3

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 11ed5/3 12ed5/3 13ed5/3 →
Prime factorization 22 × 3
Step size 73.6966¢ 
Octave 16\12ed5/3 (1179.14¢) (→4\3ed5/3)
Twelfth 26\12ed5/3 (1916.11¢) (→13\6ed5/3)
Consistency limit 3
Distinct consistency limit 2
Special properties

12 equal divisions of 5/3 (abbreviated 12ed5/3) is a nonoctave tuning system that divides the interval of 5/3 into 12 equal parts of about 73.7 ¢ each. Each step represents a frequency ratio of (5/3)1/12, or the 12th root of 5/3.

One step of this tuning is extremely close to 24/23, being 0.016 cents sharp of that interval.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 73.697 18/17, 19/18, 20/19
2 147.393 11/10, 12/11, 13/12, 14/13, 15/14, 23/21
3 221.09 17/15
4 294.786 6/5, 7/6, 13/11
5 368.483 21/17
6 442.179 9/7, 13/10, 14/11, 23/18
7 515.876 19/14, 23/17
8 589.572 7/5, 10/7, 18/13
9 663.269 19/13
10 736.966 14/9, 20/13, 23/15
11 810.662 19/12
12 884.359 5/3, 22/13, 23/14

Harmonics

Approximation of harmonics in 12ed5/3
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -20.9 +14.2 +32.0 +14.2 -6.7 +21.2 +11.1 +28.3 -6.7 -24.3 -27.6
Relative (%) -28.3 +19.2 +43.4 +19.2 -9.1 +28.8 +15.1 +38.4 -9.1 -33.0 -37.4
Steps
(reduced)
16
(4)
26
(2)
33
(9)
38
(2)
42
(6)
46
(10)
49
(1)
52
(4)
54
(6)
56
(8)
58
(10)
Approximation of harmonics in 12ed5/3
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -18.7 +0.4 +28.3 -9.7 +32.7 +7.5 -12.5 -27.6 +35.4 +28.5 +25.3
Relative (%) -25.4 +0.5 +38.4 -13.2 +44.4 +10.1 -16.9 -37.4 +48.0 +38.7 +34.3
Steps
(reduced)
60
(0)
62
(2)
64
(4)
65
(5)
67
(7)
68
(8)
69
(9)
70
(10)
72
(0)
73
(1)
74
(2)