12ed5/3
Jump to navigation
Jump to search
Prime factorization
22 × 3
Step size
73.6966¢
Octave
16\12ed5/3 (1179.14¢) (→4\3ed5/3)
Twelfth
26\12ed5/3 (1916.11¢) (→13\6ed5/3)
Consistency limit
3
Distinct consistency limit
2
Special properties
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 11ed5/3 | 12ed5/3 | 13ed5/3 → |
12 equal divisions of 5/3 (abbreviated 12ed5/3) is a nonoctave tuning system that divides the interval of 5/3 into 12 equal parts of about 73.7 ¢ each. Each step represents a frequency ratio of (5/3)1/12, or the 12th root of 5/3.
One step of this tuning is extremely close to 24/23, being 0.016 cents sharp of that interval.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 73.697 | 18/17, 19/18, 20/19 |
2 | 147.393 | 11/10, 12/11, 13/12, 14/13, 15/14, 23/21 |
3 | 221.09 | 17/15 |
4 | 294.786 | 6/5, 7/6, 13/11 |
5 | 368.483 | 21/17 |
6 | 442.179 | 9/7, 13/10, 14/11, 23/18 |
7 | 515.876 | 19/14, 23/17 |
8 | 589.572 | 7/5, 10/7, 18/13 |
9 | 663.269 | 19/13 |
10 | 736.966 | 14/9, 20/13, 23/15 |
11 | 810.662 | 19/12 |
12 | 884.359 | 5/3, 22/13, 23/14 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -20.9 | +14.2 | +32.0 | +14.2 | -6.7 | +21.2 | +11.1 | +28.3 | -6.7 | -24.3 | -27.6 |
Relative (%) | -28.3 | +19.2 | +43.4 | +19.2 | -9.1 | +28.8 | +15.1 | +38.4 | -9.1 | -33.0 | -37.4 | |
Steps (reduced) |
16 (4) |
26 (2) |
33 (9) |
38 (2) |
42 (6) |
46 (10) |
49 (1) |
52 (4) |
54 (6) |
56 (8) |
58 (10) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -18.7 | +0.4 | +28.3 | -9.7 | +32.7 | +7.5 | -12.5 | -27.6 | +35.4 | +28.5 | +25.3 |
Relative (%) | -25.4 | +0.5 | +38.4 | -13.2 | +44.4 | +10.1 | -16.9 | -37.4 | +48.0 | +38.7 | +34.3 | |
Steps (reduced) |
60 (0) |
62 (2) |
64 (4) |
65 (5) |
67 (7) |
68 (8) |
69 (9) |
70 (10) |
72 (0) |
73 (1) |
74 (2) |