15edf
Jump to navigation
Jump to search
Prime factorization
3 × 5
Step size
46.797¢
Octave
26\15edf (1216.72¢)
Twelfth
41\15edf (1918.68¢)
Consistency limit
2
Distinct consistency limit
2
← 14edf | 15edf | 16edf → |
15EDF is the equal division of the just perfect fifth into 15 parts of 46.797 cents each, corresponding to 25.6427 edo (similar to every third step of 77edo). The 3edf~5edo correspondence has completely collapsed by this point, with this EDF being closer to 26edo than 25edo.
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +16.7 | +16.7 | -13.4 | +21.5 | -13.4 | +0.6 | +3.4 | -13.4 | -8.6 | +13.6 | +3.4 |
Relative (%) | +35.7 | +35.7 | -28.5 | +46.0 | -28.5 | +1.2 | +7.2 | -28.5 | -18.3 | +29.1 | +7.2 | |
Steps (reduced) |
26 (11) |
41 (11) |
51 (6) |
60 (0) |
66 (6) |
72 (12) |
77 (2) |
81 (6) |
85 (10) |
89 (14) |
92 (2) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +5.2 | +17.3 | -8.6 | +20.1 | +8.7 | +3.4 | +3.4 | +8.2 | +17.3 | -16.5 | +0.2 |
Relative (%) | +11.1 | +36.9 | -18.3 | +42.9 | +18.7 | +7.2 | +7.2 | +17.4 | +36.9 | -35.2 | +0.4 | |
Steps (reduced) |
95 (5) |
98 (8) |
100 (10) |
103 (13) |
105 (0) |
107 (2) |
109 (4) |
111 (6) |
113 (8) |
114 (9) |
116 (11) |
Intervals
degree | cents value | corresponding JI intervals |
comments |
---|---|---|---|
0 | exact 1/1 | ||
1 | 46.797 | ||
2 | 93.594 | 19/18 | |
3 | 140.391 | 13/12 | |
4 | 187.188 | 10/9 | |
5 | 233.985 | 8/7 | |
6 | 280.782 | 20/17 | |
7 | 327.579 | ||
8 | 374.376 | ||
9 | 421.173 | 51/40 | |
10 | 467.97 | 21/16 | |
11 | 514.767 | 27/20 | |
12 | 561.564 | 18/13 | |
13 | 608.361 | 27/19 | |
14 | 655.158 | ||
15 | 701.955 | exact 3/2 | just perfect fifth |
16 | 748.752 | ||
17 | 795.549 | 19/12 | |
18 | 842.346 | 13/8 | |
19 | 889.143 | 5/3 | |
20 | 935.94 | 12/7 | |
21 | 982.737 | 30/17 | |
22 | 1029.534 | ||
23 | 1076.331 | ||
24 | 1123.128 | 153/80 | |
25 | 1168.925 | 63/32 | |
26 | 1216.722 | 81/40 | |
27 | 1263.519 | 27/13 | |
28 | 1310.316 | 81/38 | |
29 | 1357.113 | ||
30 | 1403.91 | exact 9/4 |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |