16edf

From Xenharmonic Wiki
Jump to navigation Jump to search
← 15edf16edf17edf →
Prime factorization 24
Step size 43.8722¢ 
Octave 27\16edf (1184.55¢)
Twelfth 43\16edf (1886.5¢)
Consistency limit 2
Distinct consistency limit 2

16EDF is the equal division of the just perfect fifth into 16 parts of 43.8722 cents each, corresponding to 27.3522 edo (similar to every third step of 82edo). 16edf contains good approximations of the 7th and 13th harmonics.

It serves as a good approximation to halftone temperament, containing the ~7/5 generator at 13 steps.

Lookalikes: 27edo, 43edt

Intervals

degree cents value corresponding
JI intervals
Halftone[6] notation (using ups and downs) comments
0 0.0000 1/1 C
1 43.8722 40/39, 39/38 ^C
2 87.7444 20/19 Db
3 131.6166 55/51, (27/25) vD
4 175.4888 (21/19) D
5 219.3609 vE
6 263.2331 (7/6) E
7 307.1053 Fb
8 350.9775 60/49, 49/40 vF
9 394.8497 (44/35) F
10 438.7219 (9/7) Ab
11 482.5941 vA
12 526.4663 (19/14) A
13 570.3384 (25/18), 153/110, 112/81 B
14 614.2106 (10/7) Cb
15 658.0828 19/13 vC
16 701.9550 3/2 (exact) C just perfect fifth
17 745.8272 20/13
18 789.6994 30/19
19 833.5716 55/34
20 877.4438
21 921.3159
22 965.1881 7/4
23 1009.0603
24 1052.9325 90/49, (11/6)
25 1096.8047 (66/35)
26 1140.6769
27 1184.5491
28 1228.4213 128/63
29 1272.2934 25/12
30 1316.1656 15/7
31 1360.0378 57/26
32 1403.9100 9/4 (exact) pythagorean ninth

Music

schizophrenic lullaby fugue by nationalsolipsism Neptune by Nae Ayy