90ed10
Jump to navigation
Jump to search
← 89ed10 | 90ed10 | 91ed10 → |
90 equal divisions of the 10th harmonic (abbreviated 90ed10) is a nonoctave tuning system that divides the interval of 10/1 into 90 equal parts of about 44.3 ¢ each. Each step represents a frequency ratio of 101/90, or the 90th root of 10.
Theory
90ed10 is closely related to 27edo, but with the 10th harmonic rather than the octave being just, which compresses the octave by about 4.11 ¢. The local zeta peak around 27 is located at 27.086614, which has a step size of 44.3023 ¢, making 90ed10 very close to optimal for 27edo.
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -4.1 | +2.6 | -8.2 | +4.1 | -1.5 | -2.6 | -12.3 | +5.2 | +0.0 | +12.2 | -5.6 |
Relative (%) | -9.3 | +5.9 | -18.5 | +9.3 | -3.4 | -5.9 | -27.8 | +11.8 | +0.0 | +27.5 | -12.6 | |
Steps (reduced) |
27 (27) |
43 (43) |
54 (54) |
63 (63) |
70 (70) |
76 (76) |
81 (81) |
86 (86) |
90 (0) |
94 (4) |
97 (7) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -11.3 | -6.7 | +6.7 | -16.4 | +11.5 | +1.1 | -3.9 | -4.1 | +0.0 | +8.1 | +19.7 | -9.7 |
Relative (%) | -25.5 | -15.2 | +15.2 | -37.1 | +26.0 | +2.5 | -8.8 | -9.3 | +0.0 | +18.2 | +44.4 | -21.9 | |
Steps (reduced) |
100 (10) |
103 (13) |
106 (16) |
108 (18) |
111 (21) |
113 (23) |
115 (25) |
117 (27) |
119 (29) |
121 (31) |
123 (33) |
124 (34) |
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 44.3 | 38/37, 39/38, 40/39, 41/40, 42/41 |
2 | 88.6 | 20/19, 39/37, 41/39 |
3 | 132.9 | 27/25, 40/37, 41/38 |
4 | 177.2 | 31/28, 41/37 |
5 | 221.5 | 25/22, 33/29, 42/37 |
6 | 265.8 | 7/6 |
7 | 310 | |
8 | 354.3 | 27/22, 38/31 |
9 | 398.6 | 29/23, 34/27, 39/31 |
10 | 442.9 | 31/24, 40/31 |
11 | 487.2 | |
12 | 531.5 | 34/25 |
13 | 575.8 | 39/28 |
14 | 620.1 | 10/7 |
15 | 664.4 | 22/15 |
16 | 708.7 | |
17 | 753 | 17/11 |
18 | 797.3 | 19/12 |
19 | 841.6 | 13/8 |
20 | 885.8 | 5/3 |
21 | 930.1 | |
22 | 974.4 | |
23 | 1018.7 | 9/5 |
24 | 1063 | 24/13, 37/20 |
25 | 1107.3 | 36/19 |
26 | 1151.6 | 35/18, 37/19 |
27 | 1195.9 | |
28 | 1240.2 | 41/20 |
29 | 1284.5 | 21/10 |
30 | 1328.8 | 28/13, 41/19 |
31 | 1373.1 | 42/19 |
32 | 1417.4 | 34/15 |
33 | 1461.6 | |
34 | 1505.9 | 31/13 |
35 | 1550.2 | |
36 | 1594.5 | |
37 | 1638.8 | |
38 | 1683.1 | 37/14 |
39 | 1727.4 | 19/7 |
40 | 1771.7 | 39/14 |
41 | 1816 | 20/7 |
42 | 1860.3 | 41/14 |
43 | 1904.6 | 3/1 |
44 | 1948.9 | 37/12 |
45 | 1993.2 | 19/6 |
46 | 2037.4 | |
47 | 2081.7 | 10/3 |
48 | 2126 | 41/12 |
49 | 2170.3 | 7/2 |
50 | 2214.6 | |
51 | 2258.9 | |
52 | 2303.2 | 34/9 |
53 | 2347.5 | 31/8 |
54 | 2391.8 | |
55 | 2436.1 | |
56 | 2480.4 | |
57 | 2524.7 | |
58 | 2569 | |
59 | 2613.3 | |
60 | 2657.5 | |
61 | 2701.8 | |
62 | 2746.1 | |
63 | 2790.4 | |
64 | 2834.7 | 36/7 |
65 | 2879 | |
66 | 2923.3 | |
67 | 2967.6 | |
68 | 3011.9 | |
69 | 3056.2 | |
70 | 3100.5 | 6/1 |
71 | 3144.8 | |
72 | 3189.1 | |
73 | 3233.3 | |
74 | 3277.6 | |
75 | 3321.9 | |
76 | 3366.2 | 7/1 |
77 | 3410.5 | |
78 | 3454.8 | |
79 | 3499.1 | |
80 | 3543.4 | 31/4 |
81 | 3587.7 | |
82 | 3632 | |
83 | 3676.3 | |
84 | 3720.6 | |
85 | 3764.9 | |
86 | 3809.1 | |
87 | 3853.4 | 37/4 |
88 | 3897.7 | 19/2 |
89 | 3942 | 39/4 |
90 | 3986.3 | 10/1 |