53edf

From Xenharmonic Wiki
Jump to navigation Jump to search
← 52edf 53edf 54edf →
Prime factorization 53 (prime)
Step size 13.2444¢ 
Octave 91\53edf (1205.24¢)
Twelfth 144\53edf (1907.2¢)
Consistency limit 2
Distinct consistency limit 2

53 equal divisions of the octave (abbreviated 53edo or 53ed2), also called 53-tone equal temperament (53tet) or 53 equal temperament (53et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 53 equal parts of about 22.6 ¢ each. Each step represents a frequency ratio of 21/53, or the 53rd root of 2.

Theory

53edf corresponds to 90.6041edo, similar to every fifth step of 453edo. It is related to the regular temperament which tempers out [-44 44 53 -53 in the 7-limit, which is supported by 90-, 91-, 181-, 453-, 544-, 634-, 725-, 997-, 1087-, and 1178edo.

Harmonics

Approximation of prime harmonics in 53edf
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +5.24 +5.24 -4.98 -4.74 -5.81 -3.64 -4.51 +1.59 +1.94 -2.03 +1.72
Relative (%) +39.6 +39.6 -37.6 -35.8 -43.9 -27.5 -34.1 +12.0 +14.7 -15.3 +13.0
Steps
(reduced)
91
(38)
144
(38)
210
(51)
254
(42)
313
(48)
335
(17)
370
(52)
385
(14)
410
(39)
440
(16)
449
(25)
Approximation of prime harmonics in 53edf
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) +0.03 -5.51 +4.74 -3.56 +0.36 +0.11 -4.62 +5.13 -2.55 +2.34 -1.97
Relative (%) +0.2 -41.6 +35.8 -26.9 +2.7 +0.8 -34.9 +38.7 -19.2 +17.7 -14.8
Steps
(reduced)
472
(48)
485
(8)
492
(15)
503
(26)
519
(42)
533
(3)
537
(7)
550
(20)
557
(27)
561
(31)
571
(41)

Related temperament

7-limit 453&544&634

Comma: |-44 44 53 -53>

POTE generators: ~5/4 = 386.2004, ~3796875/3764768 = 13.2434

Mapping: [<1 1 0 0|, <0 53 0 44|, <0 0 1 1|]

EDOs: 90, 91, 181, 453, 544, 634, 725, 997, 1087, 1178

7-limit 453&1178

Commas: 2460375/2458624, |6 -1 38 -33>

POTE generator: ~3796875/3764768 = 13.2432

Mapping: [<1 1 -1 -1|, <0 53 301 345|]

EDOs: 453, 725, 1178, 1631, 2084, 2809