2809edo
Jump to navigation
Jump to search
Prime factorization
532
Step size
0.427198¢
Fifth
1643\2809 (701.887¢) (→31\53)
Semitones (A1:m2)
265:212 (113.2¢ : 90.57¢)
Consistency limit
9
Distinct consistency limit
9
← 2808edo | 2809edo | 2810edo → |
2809 equal divisions of the octave (2809edo), or 2809-tone equal temperament (2809tet), 2809 equal temperament (2809et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 2809 equal parts of about 0.427 ¢ each.
Theory
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | absolute (¢) | +0.000 | -0.068 | -0.126 | +0.060 | +0.195 | +0.199 | +0.135 | -0.183 | +0.134 | -0.029 | -0.144 |
relative (%) | +0 | -16 | -30 | +14 | +46 | +46 | +32 | -43 | +31 | -7 | -34 | |
Steps (reduced) |
2809 (0) |
4452 (1643) |
6522 (904) |
7886 (2268) |
9718 (1291) |
10395 (1968) |
11482 (246) |
11932 (696) |
12707 (1471) |
13646 (2410) |
13916 (2680) |
This EDO 53*53 but it shares its fifth, as well as both its consistency and distinct consistency limits, with 53edo.