4L 5s (3/1-equivalent)

From Xenharmonic Wiki
(Redirected from Lambda)
Jump to navigation Jump to search
↖3L 4s⟨3/1⟩↑4L 4s⟨3/1⟩ 5L 4s⟨3/1⟩↗
←3L 5s⟨3/1⟩4L 5s⟨3/1⟩5L 5s⟨3/1⟩→
↙3L 6s⟨3/1⟩↓4L 6s⟨3/1⟩ 5L 6s⟨3/1⟩↘
Brightest mode LsLsLsLss
Period 3/1
Range for bright generator 2\9edt (422.7¢) to 1\4edt (475.5¢)
Range for dark generator 3\4edt (1426.5¢) to 7\9edt (1479.3¢)
Parent MOS 4L 1s⟨3/1⟩
Sister MOS 5L 4s⟨3/1⟩
Daughter MOSes 9L 4s⟨3/1⟩, 4L 9s⟨3/1⟩
Equal tunings
Supersoft (L:s = 4:3) 7\31edt (429.5¢)
Soft (L:s = 3:2) 5\22edt (432.3¢)
Semisoft (L:s = 5:3) 8\35edt (434.7¢)
Basic (L:s = 2:1) 3\13edt (438.9¢)
Semihard (L:s = 5:2) 7\30edt (443.8¢)
Hard (L:s = 3:1) 4\17edt (447.5¢)
Superhard (L:s = 4:1) 5\21edt (452.8¢)

4L 5s⟨3/1⟩ is a non-octave moment of symmetry scale consisting of 4 large steps and 5 small steps, repeating every interval of 3/1 (1901.955¢). This scale is made using a generator ranging from 422.657¢ to 475.489¢, or from 1426.466¢ to 1479.298¢.


Suggested for use as a "diatonic scale" when playing Bohlen-Pierce is the 9-note Lambda scale, which is the 4L5s MOS with equave 3/1. This can be thought of as an MOS generated by a 3.5.7 rank-2 temperament called BPS (Bohlen-Pierce-Stearns) that eliminates only the comma 245/243, so that 9/7 * 9/7 = 5/3. This is a very good temperament on the 3.5.7 subgroup, and additionally is supported by many EDT's (and even EDOs!) besides 13-EDT.

Some low-numbered EDOs that support BPS are 19, 22, 27, 41, and 46, and some low-numbered EDTs that support it are 9, 13, 17, and 30, all of which make it possible to play BP music to some reasonable extent. These equal temperaments contain not only the Lambda BP diatonic scale, but, with the exception 9edt, also the 13-note "Lambda chromatic" MOS scale, or Lambda[13], which can be thought of as a "detempered" version of the 13-EDT Bohlen Pierce scale. This scale may be a suitable melodic substitute for the BP chromatic scale, and is basically the same as how 19-EDO and 31-EDO do not contain 12-EDO as a subset, but they do contain the meantone[12] chromatic scale.

When playing this temperament in some EDO, it may be desired to stretch/compress the tuning so that the tritave is pure, rather than the octave being pure - or in general, to minimize the error on the 3.5.7 subgroup while ignoring the error on 2/1.

One can "add" the octave to BPS temperament by simply creating a new mapping for 2/1. A simple way to do so is to map the 2/1 to +7 of the ~9/7 generators, minus a single tritave. This is Sensi temperament, in essence treating it as a "3.5.7.2 extension" of the original 3.5.7 BPS temperament.

Modes

Modes of 4L 5s⟨3/1⟩
UDP Step pattern
8|0 LsLsLsLss
7|1 LsLsLssLs
6|2 LsLssLsLs
5|3 LssLsLsLs
4|4 sLsLsLsLs
3|5 sLsLsLssL
2|6 sLsLssLsL
1|7 sLssLsLsL
0|8 ssLsLsLsL

List of EDT's supporting Lambda Temperament

Below is a list of the equal-temperaments which contain a 4L+5s scale using generators between 422.7 cents and 475.5 cents.


Steps of ED Generator in cents Step ratio Comments
Bright Dark L:s Hardness
2\9edt 422.657 1479.298 1:1 1 Equalized 4L 5s⟨3/1⟩
15\67edt 425.811 1476.144 8:7 1.143
13\58edt 426.3 1475.655 7:6 1.167
24\107edt 426.607 1475.348 13:11 1.182
11\49edt 426.969 1474.986 6:5 1.2
31\138edt 427.251 1474.704 17:14 1.214
20\89edt 427.406 1474.549 11:9 1.222
29\129edt 427.571 1474.384 16:13 1.231
9\40edt 427.94 1474.015 5:4 1.25
34\151edt 428.255 1473.7 19:15 1.267
25\111edt 428.368 1473.587 14:11 1.273
41\182edt 428.462 1473.493 23:18 1.278
16\71edt 428.61 1473.345 9:7 1.286
39\173edt 428.764 1473.191 22:17 1.294
23\102edt 428.872 1473.083 13:10 1.3
30\133edt 429.012 1472.943 17:13 1.308
7\31edt 429.474 1472.481 4:3 1.333 Supersoft 4L 5s⟨3/1⟩
33\146edt 429.894 1472.061 19:14 1.357
26\115edt 430.007 1471.948 15:11 1.364
45\199edt 430.09 1471.865 26:19 1.368
19\84edt 430.204 1471.751 11:8 1.375
50\221edt 430.307 1471.648 29:21 1.381
31\137edt 430.369 1471.586 18:13 1.385
43\190edt 430.442 1471.513 25:18 1.389
12\53edt 430.631 1471.324 7:5 1.4
41\181edt 430.83 1471.125 24:17 1.412
29\128edt 430.912 1471.043 17:12 1.417
46\203edt 430.985 1470.97 27:19 1.421
17\75edt 431.11 1470.845 10:7 1.429
39\172edt 431.257 1470.698 23:16 1.438
22\97edt 431.371 1470.584 13:9 1.444
27\119edt 431.536 1470.419 16:11 1.455
5\22edt 432.263 1469.693 3:2 1.5 Soft 4L 5s⟨3/1⟩
28\123edt 432.965 1468.99 17:11 1.545
23\101edt 433.118 1468.837 14:9 1.556
41\180edt 433.223 1468.732 25:16 1.563
18\79edt 433.357 1468.598 11:7 1.571
49\215edt 433.469 1468.486 30:19 1.579
31\136edt 433.534 1468.421 19:12 1.583
44\193edt 433.606 1468.349 27:17 1.588
13\57edt 433.779 1468.176 8:5 1.6
47\206edt 433.941 1468.014 29:18 1.611
34\149edt 434.003 1467.952 21:13 1.615
55\241edt 434.056 1467.899 34:21 1.619
21\92edt 434.142 1467.813 13:8 1.625
50\219edt 434.236 1467.719 31:19 1.632
29\127edt 434.305 1467.65 18:11 1.636
37\162edt 434.397 1467.558 23:14 1.643
8\35edt 434.733 1467.222 5:3 1.667 Semisoft 4L 5s⟨3/1⟩
35\153edt 435.088 1466.867 22:13 1.692
27\118edt 435.193 1466.762 17:10 1.7
46\201edt 435.273 1466.682 29:17 1.706
19\83edt 435.387 1466.568 12:7 1.714
49\214edt 435.494 1466.461 31:18 1.722
30\131edt 435.562 1466.393 19:11 1.727
41\179edt 435.643 1466.312 26:15 1.733
11\48edt 435.865 1466.09 7:4 1.75
36\157edt 436.117 1465.838 23:13 1.769
25\109edt 436.228 1465.727 16:9 1.778
39\170edt 436.331 1465.624 25:14 1.786
14\61edt 436.514 1465.441 9:5 1.8
31\135edt 436.745 1465.21 20:11 1.818
17\74edt 436.936 1465.019 11:6 1.833
20\87edt 437.231 1464.724 13:7 1.857
3\13edt 438.913 1463.042 2:1 2 Basic 4L 5s⟨3/1⟩
19\82edt 440.697 1461.258 13:6 2.167
16\69edt 441.033 1460.922 11:5 2.2
29\125edt 441.254 1460.701 20:9 2.222
13\56edt 441.525 1460.43 9:4 2.25 BPS is in this region
36\155edt 441.744 1460.211 25:11 2.273
23\99edt 441.868 1460.087 16:7 2.286
33\142edt 442.004 1459.951 23:10 2.3
10\43edt 442.315 1459.64 7:3 2.333
37\159edt 442.593 1459.362 26:11 2.364
27\116edt 442.696 1459.259 19:8 2.375
44\189edt 442.783 1459.172 31:13 2.385
17\73edt 442.921 1459.034 12:5 2.4
41\176edt 443.069 1458.886 29:12 2.417
24\103edt 443.174 1458.781 17:7 2.429
31\133edt 443.313 1458.642 22:9 2.444
7\30edt 443.79 1458.166 5:2 2.5 Semihard 4L 5s⟨3/1⟩
32\137edt 444.252 1457.703 23:9 2.556
25\107edt 444.382 1457.573 18:7 2.571
43\184edt 444.479 1457.476 31:12 2.583
18\77edt 444.613 1457.342 13:5 2.6
47\201edt 444.736 1457.219 34:13 2.615
29\124edt 444.812 1457.143 21:8 2.625
40\171edt 444.902 1457.053 29:11 2.636
11\47edt 445.138 1456.817 8:3 2.667
37\158edt 445.395 1456.56 27:10 2.7
26\111edt 445.503 1456.452 19:7 2.714
41\175edt 445.601 1456.354 30:11 2.727
15\64edt 445.771 1456.184 11:4 2.75
34\145edt 445.976 1455.979 25:9 2.778
19\81edt 446.138 1455.817 14:5 2.8
23\98edt 446.377 1455.578 17:6 2.833
4\17edt 447.519 1454.436 3:1 3 Hard 4L 5s⟨3/1⟩
21\89edt 448.776 1453.179 16:5 3.2
17\72edt 449.073 1452.882 13:4 3.25
30\127edt 449.281 1452.674 23:7 3.286
13\55edt 449.553 1452.402 10:3 3.333
35\148edt 449.787 1452.168 27:8 3.375
22\93edt 449.925 1452.03 17:5 3.4
31\131edt 450.081 1451.874 24:7 3.429
9\38edt 450.463 1451.492 7:2 3.5
32\135edt 450.834 1451.121 25:7 3.571
23\97edt 450.979 1450.976 18:5 3.6
37\156edt 451.105 1450.85 29:8 3.625
14\59edt 451.311 1450.644 11:3 3.667
33\139edt 451.543 1450.412 26:7 3.714
19\80edt 451.714 1450.241 15:4 3.75
24\101edt 451.95 1450.005 19:5 3.8
5\21edt 452.846 1449.109 4:1 4 Superhard 4L 5s⟨3/1⟩
21\88edt 453.876 1448.079 17:4 4.25
16\67edt 454.198 1447.757 13:3 4.333
27\113edt 454.449 1447.506 22:5 4.4
11\46edt 454.815 1447.14 9:2 4.5
28\117edt 455.169 1446.786 23:5 4.6
17\71edt 455.398 1446.557 14:3 4.667
23\96edt 455.677 1446.278 19:4 4.75
6\25edt 456.469 1445.486 5:1 5
19\79edt 457.432 1444.523 16:3 5.333
13\54edt 457.878 1444.077 11:2 5.5
20\83edt 458.302 1443.653 17:3 5.667
7\29edt 459.093 1442.862 6:1 6
15\62edt 460.15 1441.805 13:2 6.5
8\33edt 461.08 1440.875 7:1 7
9\37edt 462.638 1439.317 8:1 8
1\4edt 475.489 1426.466 1:0 → ∞ Collapsed 4L 5s⟨3/1⟩


  • Schism, by which I mean, the most accurate value for 5/3 and-or 7/3 is found outside the 4L+5s MOS.

[Also, the way I see it, as 4edt and 9edt are comparable to 5edo and 7edo, then the "counterparts" of Blackwood and Whitewood would be found in multiples therein and would be octatonic and octadecatonic, e.g. 12edt and 27edt.]