146edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 145edt146edt147edt →
Prime factorization 2 × 73
Step size 13.0271¢ 
Octave 92\146edt (1198.49¢) (→46\73edt)
Consistency limit 5
Distinct consistency limit 5

146 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 146edt or 146ed3), is a nonoctave tuning system that divides the interval of 3/1 into 146 equal parts of about 13 ¢ each. Each step represents a frequency ratio of 31/146, or the 146th root of 3.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 13.027
2 26.054
3 39.081 44/43, 45/44, 46/45
4 52.108 34/33
5 65.135 27/26
6 78.163 23/22, 45/43
7 91.19 39/37
8 104.217
9 117.244 46/43
10 130.271 55/51
11 143.298 25/23
12 156.325 23/21
13 169.352 32/29, 43/39
14 182.379 10/9
15 195.406 28/25, 47/42
16 208.433 44/39
17 221.461 25/22
18 234.488
19 247.515 15/13
20 260.542 43/37, 50/43
21 273.569 41/35, 55/47
22 286.596 46/39
23 299.623 44/37
24 312.65
25 325.677 41/34
26 338.704 45/37
27 351.731 38/31
28 364.758 21/17
29 377.786 46/37, 51/41, 56/45
30 390.813
31 403.84 24/19
32 416.867 14/11
33 429.894 50/39
34 442.921 31/24
35 455.948 56/43
36 468.975 38/29
37 482.002 33/25, 37/28
38 495.029
39 508.056 55/41
40 521.084 27/20, 50/37
41 534.111
42 547.138
43 560.165 47/34
44 573.192 39/28
45 586.219
46 599.246
47 612.273 37/26, 47/33
48 625.3 33/23, 56/39
49 638.327
50 651.354 51/35
51 664.382 22/15
52 677.409 34/23, 37/25
53 690.436
54 703.463 3/2
55 716.49 56/37
56 729.517
57 742.544 43/28
58 755.571 48/31
59 768.598 39/25
60 781.625 11/7
61 794.652 19/12
62 807.68
63 820.707 45/28
64 833.734 34/21, 55/34
65 846.761 31/19, 44/27
66 859.788 23/14
67 872.815 48/29
68 885.842 5/3
69 898.869 37/22, 42/25
70 911.896 22/13
71 924.923
72 937.95 43/25
73 950.978 26/15, 45/26
74 964.005
75 977.032
76 990.059 39/22
77 1003.086 25/14
78 1016.113 9/5
79 1029.14 29/16
80 1042.167 42/23
81 1055.194 46/25
82 1068.221 50/27
83 1081.248 28/15
84 1094.275 47/25
85 1107.303 36/19
86 1120.33 21/11
87 1133.357 25/13, 52/27
88 1146.384 31/16
89 1159.411 41/21, 43/22
90 1172.438
91 1185.465
92 1198.492 2/1
93 1211.519
94 1224.546
95 1237.573 45/22, 47/23
96 1250.601 35/17
97 1263.628 56/27
98 1276.655 23/11
99 1289.682 40/19
100 1302.709
101 1315.736 47/22
102 1328.763 28/13
103 1341.79
104 1354.817
105 1367.844
106 1380.871 20/9
107 1393.899 47/21
108 1406.926
109 1419.953 25/11
110 1432.98
111 1446.007
112 1459.034
113 1472.061
114 1485.088 33/14
115 1498.115 19/8
116 1511.142
117 1524.169 41/17
118 1537.197 17/7
119 1550.224
120 1563.251 37/15
121 1576.278
122 1589.305
123 1602.332
124 1615.359
125 1628.386
126 1641.413
127 1654.44 13/5
128 1667.467 55/21
129 1680.494
130 1693.522
131 1706.549
132 1719.576 27/10
133 1732.603
134 1745.63
135 1758.657
136 1771.684
137 1784.711
138 1797.738
139 1810.765 37/13
140 1823.792 43/15
141 1836.82 26/9
142 1849.847
143 1862.874 44/15
144 1875.901
145 1888.928
146 1901.955 3/1

Harmonics

Approximation of harmonics in 146edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -1.51 +0.00 -3.02 +1.48 -1.51 +5.19 -4.52 +0.00 -0.02 +4.32 -3.02
Relative (%) -11.6 +0.0 -23.1 +11.4 -11.6 +39.8 -34.7 +0.0 -0.2 +33.2 -23.1
Steps
(reduced)
92
(92)
146
(0)
184
(38)
214
(68)
238
(92)
259
(113)
276
(130)
292
(0)
306
(14)
319
(27)
330
(38)
Approximation of harmonics in 146edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +1.71 +3.68 +1.48 -6.03 +6.26 -1.51 -3.92 -1.53 +5.19 +2.82 +4.02
Relative (%) +13.1 +28.3 +11.4 -46.3 +48.0 -11.6 -30.1 -11.8 +39.8 +21.6 +30.9
Steps
(reduced)
341
(49)
351
(59)
360
(68)
368
(76)
377
(85)
384
(92)
391
(99)
398
(106)
405
(113)
411
(119)
417
(125)