146edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 145edt 146edt 147edt →
Prime factorization 2 × 73
Step size 13.0271¢ 
Octave 92\146edt (1198.49¢) (→46\73edt)
Consistency limit 5
Distinct consistency limit 5

146 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 146edt or 146ed3), is a nonoctave tuning system that divides the interval of 3/1 into 146 equal parts of about 13 ¢ each. Each step represents a frequency ratio of 31/146, or the 146th root of 3.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 13
2 26.1
3 39.1 44/43, 45/44, 46/45
4 52.1 34/33
5 65.1 27/26
6 78.2 23/22, 45/43
7 91.2 39/37
8 104.2
9 117.2 46/43
10 130.3 55/51
11 143.3 25/23
12 156.3 23/21
13 169.4 32/29, 43/39
14 182.4 10/9
15 195.4 28/25, 47/42
16 208.4 44/39
17 221.5 25/22
18 234.5
19 247.5 15/13
20 260.5 43/37, 50/43
21 273.6 41/35, 55/47
22 286.6 46/39
23 299.6 44/37
24 312.7
25 325.7 41/34
26 338.7 45/37
27 351.7 38/31
28 364.8 21/17
29 377.8 46/37, 51/41, 56/45
30 390.8
31 403.8 24/19
32 416.9 14/11
33 429.9 50/39
34 442.9 31/24
35 455.9 56/43
36 469 38/29
37 482 33/25, 37/28
38 495
39 508.1 55/41
40 521.1 27/20, 50/37
41 534.1
42 547.1
43 560.2 47/34
44 573.2 39/28
45 586.2
46 599.2
47 612.3 37/26, 47/33
48 625.3 33/23, 56/39
49 638.3
50 651.4 51/35
51 664.4 22/15
52 677.4 34/23, 37/25
53 690.4
54 703.5 3/2
55 716.5 56/37
56 729.5
57 742.5 43/28
58 755.6 48/31
59 768.6 39/25
60 781.6 11/7
61 794.7 19/12
62 807.7
63 820.7 45/28
64 833.7 34/21, 55/34
65 846.8 31/19, 44/27
66 859.8 23/14
67 872.8 48/29
68 885.8 5/3
69 898.9 37/22, 42/25
70 911.9 22/13
71 924.9
72 938 43/25
73 951 26/15, 45/26
74 964
75 977
76 990.1 39/22
77 1003.1 25/14
78 1016.1 9/5
79 1029.1 29/16
80 1042.2 42/23
81 1055.2 46/25
82 1068.2 50/27
83 1081.2 28/15
84 1094.3 47/25
85 1107.3 36/19
86 1120.3 21/11
87 1133.4 25/13, 52/27
88 1146.4 31/16
89 1159.4 41/21, 43/22
90 1172.4
91 1185.5
92 1198.5 2/1
93 1211.5
94 1224.5
95 1237.6 45/22, 47/23
96 1250.6 35/17
97 1263.6 56/27
98 1276.7 23/11
99 1289.7 40/19
100 1302.7
101 1315.7 47/22
102 1328.8 28/13
103 1341.8
104 1354.8
105 1367.8
106 1380.9 20/9
107 1393.9 47/21
108 1406.9
109 1420 25/11
110 1433
111 1446
112 1459
113 1472.1
114 1485.1 33/14
115 1498.1 19/8
116 1511.1
117 1524.2 41/17
118 1537.2 17/7
119 1550.2
120 1563.3 37/15
121 1576.3
122 1589.3
123 1602.3
124 1615.4
125 1628.4
126 1641.4
127 1654.4 13/5
128 1667.5 55/21
129 1680.5
130 1693.5
131 1706.5
132 1719.6 27/10
133 1732.6
134 1745.6
135 1758.7
136 1771.7
137 1784.7
138 1797.7
139 1810.8 37/13
140 1823.8 43/15
141 1836.8 26/9
142 1849.8
143 1862.9 44/15
144 1875.9
145 1888.9
146 1902 3/1

Harmonics

Approximation of harmonics in 146edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -1.51 +0.00 -3.02 +1.48 -1.51 +5.19 -4.52 +0.00 -0.02 +4.32 -3.02
Relative (%) -11.6 +0.0 -23.1 +11.4 -11.6 +39.8 -34.7 +0.0 -0.2 +33.2 -23.1
Steps
(reduced)
92
(92)
146
(0)
184
(38)
214
(68)
238
(92)
259
(113)
276
(130)
292
(0)
306
(14)
319
(27)
330
(38)
Approximation of harmonics in 146edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +1.71 +3.68 +1.48 -6.03 +6.26 -1.51 -3.92 -1.53 +5.19 +2.82 +4.02
Relative (%) +13.1 +28.3 +11.4 -46.3 +48.0 -11.6 -30.1 -11.8 +39.8 +21.6 +30.9
Steps
(reduced)
341
(49)
351
(59)
360
(68)
368
(76)
377
(85)
384
(92)
391
(99)
398
(106)
405
(113)
411
(119)
417
(125)